Phenotyping cardiomyopathy in adult zebrafish

被引:26
|
作者
Dvornikov, Alexey V. [1 ]
de Tombe, Pieter P. [2 ,3 ,4 ,5 ]
Xu, Xiaolei [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Dept Biochem & Mol Biol, 200 1st St SW, Rochester, MN 55905 USA
[2] Univ Illinois, Dept Physiol & Biophys, Chicago, IL 60680 USA
[3] Magdi Yacoub Inst, Cardiac Biophys Div, Harefield, Middx, England
[4] Imperial Coll, Heart & Lung Inst, London, England
[5] Freiberg Univ, Inst Expt Cardiovasc Med, Freiberg, Germany
基金
美国国家卫生研究院;
关键词
Cardiac remodeling; Cardiomyopathy; Sarcomere; Zebrafish; CARDIAC TROPONIN-T; LENGTH-DEPENDENT ACTIVATION; TRANSGENIC MOUSE MODEL; HYPERTROPHIC CARDIOMYOPATHY; IN-VIVO; CONTRACTILE FUNCTION; CA2+ SENSITIVITY; MUTATION; PHOSPHORYLATION; DYSFUNCTION;
D O I
10.1016/j.pbiomolbio.2018.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [11] Phenotyping stimulus evoked responses in larval zebrafish
    Shamchuk, Angela L.
    Tierney, Keith B.
    BEHAVIOUR, 2012, 149 (10-12) : 1177 - 1203
  • [12] Zebrafish as a model to study cardiomyopathy
    Holtzman, Nathalia S. Glickman
    Singleman, Corinna
    DEVELOPMENTAL BIOLOGY, 2011, 356 (01) : 173 - 174
  • [13] Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish
    Abdul-Wajid, Sarah
    Demarest, Bradley L.
    Yost, H. Joseph
    NATURE COMMUNICATIONS, 2018, 9
  • [14] Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish
    Sarah Abdul-Wajid
    Bradley L. Demarest
    H. Joseph Yost
    Nature Communications, 9
  • [15] Searching Genetic Modifiers For bag3-based Cardiomyopathy Using Adult Zebrafish Models
    Ding, Yonghe
    Dvornikov, Alexey
    Ma, Xiao
    Zhang, Hong
    Xu, Xiaolei
    CIRCULATION RESEARCH, 2017, 121
  • [16] Phenotyping diabetic cardiomyopathy in Europeans and South Asians
    Elisabeth H. M. Paiman
    Huub J. van Eyk
    Maurice B. Bizino
    Ilona A. Dekkers
    Paul de Heer
    Johannes W. A. Smit
    Ingrid M. Jazet
    Hildo J. Lamb
    Cardiovascular Diabetology, 18
  • [17] Phenotyping diabetic cardiomyopathy in Europeans and South Asians
    Paiman, Elisabeth H. M.
    van Eyk, Huub J.
    Bizino, Maurice B.
    Dekkers, Ilona A.
    de Heer, Paul
    Smit, Johannes W. A.
    Jazet, Ingrid M.
    Lamb, Hildo J.
    CARDIOVASCULAR DIABETOLOGY, 2019, 18 (01)
  • [18] Computerized image analysis for quantitative neuronal phenotyping in zebrafish
    Liu, Tianming
    Lu, Jianfeng
    Wang, Ye
    Campbell, William A.
    Huang, Ling
    Zhu, Jinmin
    Xia, Weiming
    Wong, Stephen T. C.
    JOURNAL OF NEUROSCIENCE METHODS, 2006, 153 (02) : 190 - 202
  • [19] Zebrafish phenomics: behavioral screens and phenotyping of mutagenized fish
    Gerlai, Robert
    CURRENT OPINION IN BEHAVIORAL SCIENCES, 2015, 2 : 21 - 27
  • [20] Classification of LMNA-variants by means of zebrafish phenotyping
    Vanoevelen, J. M.
    van Tienen, F.
    Lambrichs, E.
    Grashorn, A. C.
    Krapels, I. P.
    Verdonschot, J. A. J.
    Broers, J. L.
    Brunner, H. G.
    van den Wijngaard, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 678 - 679