Zero-field remote detection of NMR with a microfabricated atomic magnetometer

被引:109
|
作者
Ledbetter, M. P. [2 ]
Savukov, I. M. [2 ]
Budker, D. [2 ,3 ]
Shah, V. [4 ]
Knappe, S. [4 ]
Kitching, J. [4 ]
Michalak, D. J. [1 ]
Xu, S. [1 ]
Pines, A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[4] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA
关键词
microfluidics; signal-to-noise ratio; mass-limited sample;
D O I
10.1073/pnas.0711505105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microchip sensor consisting of a microfluidic channel and a microfabricated vapor cell (the heart of an atomic magnetometer). Detection occurs at zero magnetic field, which allows operation of the magnetometer in the spin-exchange relaxation-free (SERF) regime and increases the proximity of sensor and sample by eliminating the need for a solenoid to create a leading field. We achieve pulsed NMR linewidths of 26 Hz, limited, we believe, by the residence time and flow dispersion in the encoding region. In a fully optimized system, we estimate that for 1 s of integration, 7 x 10(13) protons in a volume of 1 mm(3), prepolarized in a 10-kG field, can be detected with a signal-to-noise ratio of approximate to 3. This level of sensitivity is competitive with that demonstrated by microcoils in 100-kG magnetic fields, without requiring superconducting magnets.
引用
收藏
页码:2286 / 2290
页数:5
相关论文
共 50 条
  • [21] SUPPRESSION OF THE ZERO FREQUENCY PEAK IN ZERO-FIELD NMR
    JARVIE, TP
    TAKEGOSHI, K
    SUTER, D
    PINES, A
    ZAX, DB
    CHEMICAL PHYSICS LETTERS, 1989, 158 (3-4) : 325 - 328
  • [22] Note: Detection of a single cobalt microparticle with a microfabricated atomic magnetometer
    Maser, D.
    Pandey, S.
    Ring, H.
    Ledbetter, M. P.
    Knappe, S.
    Kitching, J.
    Budker, D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (08):
  • [23] TIME DOMAIN ZERO-FIELD NMR AND NQR
    BIELECKI, A
    ZAX, DB
    THAYER, AM
    MILLAR, JM
    PINES, A
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1986, 41 (1-2): : 440 - 444
  • [24] Portable single-beam cesium zero-field magnetometer for magnetocardiography
    Dawson, Rach
    O'Dwyer, Carolyn
    Mrozowski, Marcin S.
    Irwin, Edward
    Mcgilligan, James P.
    Burt, David P.
    Hunter, Dominic
    Ingleby, Stuart
    Rea, Molly
    Holmes, Niall
    Brookes, Matthew J.
    Griffin, Paul. F.
    Riis, Erling
    JOURNAL OF OPTICAL MICROSYSTEMS, 2023, 3 (04):
  • [25] THEORY FOR ZERO-FIELD NMR ENTIRELY IN HIGH-FIELD
    TYCKO, R
    JOURNAL OF MAGNETIC RESONANCE, 1987, 75 (01): : 193 - 197
  • [26] TWO-DIMENSIONAL ZERO-FIELD NMR AND NQR
    THAYER, AM
    MILLAR, JM
    PINES, A
    CHEMICAL PHYSICS LETTERS, 1986, 129 (01) : 55 - 58
  • [27] All-optical dual-axis zero-field atomic magnetometer using light-shift modulation
    Li, Xiaoyu
    Han, Bangcheng
    Zhang, Kaixuan
    Liu, Ziao
    Wang, Shuying
    Yan, Yifan
    Lu, Jixi
    PHYSICAL REVIEW APPLIED, 2024, 21 (01)
  • [28] HETERONUCLEAR ZERO-FIELD NMR OF LIQUID-CRYSTALS
    THAYER, AM
    LUZAR, M
    PINES, A
    JOURNAL OF MAGNETIC RESONANCE, 1987, 72 (03): : 567 - 573
  • [29] Zero-Field NMR of α-Mn up to 5 GPa
    Fujita, Go
    Kawanabe, Fumiya
    Fukazawa, Hideto
    Ohama, Tetsuo
    Kohori, Yoh
    Kitagawa, Kentaro
    Iwamoto, Kaisei
    Araki, Shingo
    Kobayashi, Tatsuo C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (02)
  • [30] ZERO-FIELD NMR AND NQR LINE-SHAPES
    SEREBRENNIKOV, YA
    CHEMICAL PHYSICS LETTERS, 1987, 137 (02) : 183 - 187