Zero-field remote detection of NMR with a microfabricated atomic magnetometer

被引:109
|
作者
Ledbetter, M. P. [2 ]
Savukov, I. M. [2 ]
Budker, D. [2 ,3 ]
Shah, V. [4 ]
Knappe, S. [4 ]
Kitching, J. [4 ]
Michalak, D. J. [1 ]
Xu, S. [1 ]
Pines, A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[4] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA
关键词
microfluidics; signal-to-noise ratio; mass-limited sample;
D O I
10.1073/pnas.0711505105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microchip sensor consisting of a microfluidic channel and a microfabricated vapor cell (the heart of an atomic magnetometer). Detection occurs at zero magnetic field, which allows operation of the magnetometer in the spin-exchange relaxation-free (SERF) regime and increases the proximity of sensor and sample by eliminating the need for a solenoid to create a leading field. We achieve pulsed NMR linewidths of 26 Hz, limited, we believe, by the residence time and flow dispersion in the encoding region. In a fully optimized system, we estimate that for 1 s of integration, 7 x 10(13) protons in a volume of 1 mm(3), prepolarized in a 10-kG field, can be detected with a signal-to-noise ratio of approximate to 3. This level of sensitivity is competitive with that demonstrated by microcoils in 100-kG magnetic fields, without requiring superconducting magnets.
引用
收藏
页码:2286 / 2290
页数:5
相关论文
共 50 条
  • [1] In-situ magnetic field compensation for zero-field NMOR atomic magnetometer
    Zhang, Changhao
    Liu, Jiali
    Zhao, Xin
    Chen, Junlin
    Yang, Jiaqi
    Li, Jianli
    Jiang, Liwei
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 387
  • [2] ZERO-FIELD NMR
    THAYER, AM
    PINES, A
    ACCOUNTS OF CHEMICAL RESEARCH, 1987, 20 (02) : 47 - 53
  • [3] Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection
    Chen B.
    Jiang M.
    Ji Y.
    Bian J.
    Xu W.
    Zhang H.
    Peng X.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2017, 44 (10):
  • [4] Atomic-Signal-Based Zero-Field Finding Technique for Unshielded Atomic Vector Magnetometer
    Dong, Haifeng
    Lin, Hongbo
    Tang, Xinbin
    IEEE SENSORS JOURNAL, 2013, 13 (01) : 186 - 189
  • [5] Detuned square-wave optical modulation zero-field atomic magnetometer
    School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing
    100191, China
    不详
    310051, China
    不详
    230088, China
    不详
    310051, China
    不详
    100191, China
    Proc SPIE Int Soc Opt Eng,
  • [6] Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer
    Krzyzewski, S. P.
    Perry, A. R.
    Gerginov, V.
    Knappe, S.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (04)
  • [7] HETERONUCLEAR ZERO-FIELD NMR
    ZAX, DB
    BIELECKI, A
    ZILM, KW
    PINES, A
    CHEMICAL PHYSICS LETTERS, 1984, 106 (06) : 550 - 553
  • [8] An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening
    Jimenez-Martinez, R.
    Knappe, S.
    Kitching, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04):
  • [9] ZERO-FIELD NMR AND NQR
    ZAX, DB
    BIELECKI, A
    ZILM, KW
    PINES, A
    WEITEKAMP, DP
    JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (10): : 4877 - 4905
  • [10] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    Yin, Kai-Feng
    Lu, Ji-Xi
    Lu, Fei
    Li, Bo
    Zhou, Bin-Quan
    Ye, Mao
    CHINESE PHYSICS B, 2022, 31 (11)