Exploring Machine Learning Techniques for Identification of Cues for Robot Navigation with a LIDAR Scanner

被引:0
|
作者
Bieszczad, Aj [1 ]
机构
[1] Calif State Univ, One Univ Dr, Camarillo, CA 93012 USA
关键词
Mobile Robots; Navigation; Cue Identification; Machine Learning; Clustering; Classification; Neural Networks; Support Vector Machines; MOBILE ROBOT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we report on our explorations of machine learning techniques based on backpropagation neural networks and support vector machines in building a cue identifier for mobile robot navigation using a LIDAR scanner. We use synthetic 2D laser data to identify a technique that is most promising for actual implementation in a robot, and then validate the model using realistic data. While we explore data preprocessing applicable to machine learning, we do not apply any specific extraction of features from the raw data; instead, our feature vectors are the raw data. Each LIDAR scan represents a sequence of values for measurements taken from progressive scans (with angles vary from 0 degrees to 180 degrees); i.e., a curve plotting distances as a functions of angles. Such curves are different for each cue, and so can be the basis for identification. We apply varied grades of noise to the ideal scanner measurement to test the capability of the generated models to accommodate for both laser inaccuracy and robot motion. Our results indicate that good models can be built with both back-propagation neural network applying Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization, and with Support Vector Machines (SVM) assuming that data shaping took place with a [-0.5, 0.5] normalization followed by a principal component analysis (PCA). Furthermore, we show that SVM can create models much faster and more resilient to noise, so that is what we will be using in our further research and can recommend for similar applications.
引用
收藏
页码:645 / 652
页数:8
相关论文
共 50 条
  • [31] The identification and localization of speaker using fusion techniques and machine learning techniques
    Ali, Rasha H.
    Abdullah, Mohammed Najm
    Abed, Buthainah F.
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 133 - 149
  • [32] Quantitative cryptocurrency trading: exploring the use of machine learning techniques
    Attanasio, Giuseppe
    Cagliero, Luca
    Garza, Paolo
    Baralis, Elena
    PROCEEDINGS OF THE FIFTH INTERNATIONAL WORKSHOP ON DATA SCIENCE FOR MACRO-MODELING (DSMM 2019), 2019,
  • [33] Exploring Heart Disease Prediction through Machine Learning Techniques
    Lin, Zhicong
    Chen, Shujing
    Chen, Jichang
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 964 - 969
  • [34] Exploring Machine Learning Techniques for Coronary Heart Disease Prediction
    Khdair, Hisham
    Dasari, Naga M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 28 - 36
  • [35] Exploring the application of machine learning techniques for prediction of infiltration rate
    Siraj Muhammed Pandhiani
    Arabian Journal of Geosciences, 2022, 15 (11)
  • [36] A comparative evaluation of machine learning methods for robot navigation through human crowds
    Gaydashenko, Anastasia
    Kudenko, Daniel
    Shpilman, Aleksei
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 553 - 557
  • [37] Using Machine Learning to Blend Human and Robot Controls for Assisted Wheelchair Navigation
    Goil, Aditya
    Derry, Matthew
    Argall, Brenna D.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2013,
  • [38] Motion planning and control for mobile robot navigation using machine learning: a survey
    Xuesu Xiao
    Bo Liu
    Garrett Warnell
    Peter Stone
    Autonomous Robots, 2022, 46 : 569 - 597
  • [39] Voice Disorder Identification by Using Machine Learning Techniques
    Verde, Laura
    De Pietro, Giuseppe
    Sannino, Giovanna
    IEEE ACCESS, 2018, 6 : 16246 - 16255
  • [40] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    Computational Intelligence and Neuroscience, 2022, 2022