Primary ideals of finitely generated commutative cancellative monoids

被引:1
|
作者
Rosales, JC [1 ]
García-García, JI [1 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
semigroup; ideal; primary element;
D O I
10.1016/S0024-3795(01)00321-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a characterization of primary ideals of finitely generated commutative monoids and in the case of finitely generated cancellative monoids we give an algorithmic method for deciding if an ideal is primary or not. Finally we give some properties of primary elements of a cancellative monoid and an algorithmic method for determining the primary elements of a finitely generated cancellative monoid. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
  • [31] On properties of square-free elements in commutative cancellative monoids
    Jedrzejewicz, Piotr
    Marciniak, Mikolaj
    Matysiak, Lukasz
    Zielinski, Janusz
    SEMIGROUP FORUM, 2020, 100 (03) : 850 - 870
  • [32] Representing finitely generated refinement monoids as graph monoids
    Ara, Pere
    Pardo, Enrique
    JOURNAL OF ALGEBRA, 2017, 480 : 79 - 123
  • [33] FINITELY GENERATED COMMUTATIVE SEMIGROUPS
    MCALISTER, DB
    OCARROLL, L
    GLASGOW MATHEMATICAL JOURNAL, 1970, 11 (JUL) : 134 - +
  • [34] SETS OF LENGTHS IN ATOMIC UNIT-CANCELLATIVE FINITELY PRESENTED MONOIDS
    Geroldinger, Alfred
    Schwab, Emil Daniel
    COLLOQUIUM MATHEMATICUM, 2018, 151 (02) : 171 - 187
  • [35] Finitely generated antisymmetric graph monoids
    Ara, Pere
    Perera, Francesc
    Wehrung, Friedrich
    JOURNAL OF ALGEBRA, 2008, 320 (05) : 1963 - 1982
  • [36] On elasticities of locally finitely generated monoids
    Zhong, Qinghai
    JOURNAL OF ALGEBRA, 2019, 534 : 145 - 167
  • [37] Strongly taut finitely generated monoids
    P. A. García-Sánchez
    D. Llena
    J. C. Rosales
    Monatshefte für Mathematik, 2008, 155 : 119 - 124
  • [38] Strongly taut finitely generated monoids
    Garcia-Sanchez, P. A.
    Llena, D.
    Rosales, J. C.
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (02): : 119 - 124
  • [39] EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED
    Chang, Gyu Whan
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (03): : 271 - 275
  • [40] Non-finitely generated monoids corresponding to finitely generated homogeneous subalgebras
    Higashitani, Akihiro
    Tani, Koichiro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)