An Adams-Riemann-Roch theorem in Arakelov geometry

被引:19
|
作者
Roessler, D [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
D O I
10.1215/S0012-7094-99-09603-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:61 / 126
页数:66
相关论文
共 50 条
  • [1] An Adams-Riemann-Roch theorem in Arakelov geometry
    Roessler, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (08): : 749 - 752
  • [2] On the Adams-Riemann-Roch theorem in positive characteristic
    Pink, Richard
    Roessler, Damian
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) : 1067 - 1076
  • [3] ADAMS-RIEMANN-ROCH THEOREM IN HIGHER EQUIVARIANT K-THEORY
    KOCK, B
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 421 : 189 - 217
  • [4] On the Adams–Riemann–Roch theorem in positive characteristic
    Richard Pink
    Damian Rössler
    [J]. Mathematische Zeitschrift, 2012, 270 : 1067 - 1076
  • [5] The Riemann-Roch theorem for the Adams operations
    Navarro, A.
    Navarro, J.
    [J]. EXPOSITIONES MATHEMATICAE, 2023, 41 (04)
  • [6] A Riemann–Roch theorem in tropical geometry
    Andreas Gathmann
    Michael Kerber
    [J]. Mathematische Zeitschrift, 2008, 259 : 217 - 230
  • [7] A Riemann-Roch theorem in tropical geometry
    Gathmann, Andreas
    Kerber, Michael
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) : 217 - 230
  • [8] Riemann-Roch theorem and index theorem in non-commutative geometry
    Diep, DN
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ABSTRACT AND APPLIED ANALYSIS, 2004, : 29 - 50
  • [9] Riemann–Hurwitz theorem and Riemann–Roch theorem for hypermaps
    Mengnan Cheng
    Tingbin Cao
    [J]. Journal of Algebraic Combinatorics, 2024, 59 : 95 - 110
  • [10] The Riemann-Roch Theorem
    Popescu-Pampu, Patrick
    [J]. WHAT IS THE GENUS?, 2016, 2162 : 43 - 44