Testing multiple mapping conditioning mixing for Monte Carlo probability density function simulations

被引:39
|
作者
Wandel, AP [1 ]
Klimenko, AY [1 ]
机构
[1] Univ Queensland, Dept Engn Mech, Brisbane, Qld 4072, Australia
关键词
D O I
10.1063/1.2147609
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Mitarai [Phys. Fluids 17, 047101 (2005)] compared turbulent combustion models against homogeneous direct numerical simulations with extinction/recognition phenomena. The recently suggested multiple mapping conditioning (MMC) was not considered and is simulated here for the same case with favorable results. Implementation issues crucial for successful MMC simulations are also discussed.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [31] Predictions for the density of phenol at different temperature by Monte Carlo simulations
    Key Laboratory for Green Chemical Process, Wuhan Institute of Technology, Wuhan 430073, China
    不详
    [J]. Wuhan Ligong Daxue Xuebao, 2008, 3 (40-42):
  • [32] Temperature and density extrapolations in canonical ensemble Monte Carlo simulations
    Ferreira, AL
    Barroso, MA
    [J]. PHYSICAL REVIEW E, 2000, 61 (02) : 1195 - 1198
  • [33] Three-Dimensional Monte Carlo Simulations of Density Relaxation
    Dybenko, Oleksandr
    Rosato, Anthony D.
    Horntrop, David J.
    [J]. KONA-POWDER AND PARTICLE, 2007, 25 (133-144): : 133 - 144
  • [34] Diffuse photon density wave measurements and Monte Carlo simulations
    Kuzmin, Vladimir L.
    Neidrauer, Michael T.
    Diaz, David
    Zubkov, Leonid A.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (10)
  • [35] Fast calculation of the density of states of a fluid by Monte Carlo simulations
    Yan, QL
    de Pablo, JJ
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (03)
  • [36] Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives
    Zhang, Hui
    Xing, Yan
    Gosalvez, Miguel A.
    Pal, Prem
    Sato, Kazuo
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2015, 233 : 451 - 459
  • [37] Circumventing multiple testing: A multilocus Monte Carlo approach to testing for association
    McIntyre, LM
    Martin, ER
    Simonsen, KL
    Kaplan, NL
    [J]. GENETIC EPIDEMIOLOGY, 2000, 19 (01) : 18 - 29
  • [38] PARTICLE FLOW FOR SEQUENTIAL MONTE CARLO IMPLEMENTATION OF PROBABILITY HYPOTHESIS DENSITY
    Liu, Yang
    Wang, Wenwu
    Zhao, Yuxin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4371 - 4375
  • [39] Optimal allocation of Monte Carlo simulations to multiple hypothesis tests
    Georg Hahn
    [J]. Statistics and Computing, 2020, 30 : 571 - 586
  • [40] Multiple-histogram method for quantum Monte Carlo simulations
    Martin, CL
    [J]. PHYSICAL REVIEW B, 1999, 59 (03) : 1870 - 1873