Direct spinning of carbon nanotube fibres from liquid feedstock

被引:35
|
作者
Stano, Kelly L. [1 ,2 ]
Koziol, Krzysztof [1 ]
Pick, Martin [1 ]
Motta, Marcelo S. [1 ]
Moisala, Anna [1 ]
Vilatela, Juan J. [1 ]
Frasier, Stuart [1 ]
Windle, Alan H. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[2] N Carolina State Univ, Fibre & Polymer Sci Program, Dept Text Engn Chem & Sci, Raleigh, NC 27695 USA
关键词
Nanotube; Carbon; Fibre; Spinning; Strength;
D O I
10.1007/s12289-008-0380-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotubes are regarded by many as being the next generation in high performance materials due to their unique properties. The Cambridge Process was developed to utilize these unique properties by directly spinning carbon nanotube fibres drawn from an aerogel sock. The sock is formed from carbon nanotubes grown via a catalytic chemical vapour deposition (CVD) process. Due to the nature of CVD, the process is readily scalable. Kilometres of fibre can be made at a rate of 20 m/min. Altering process parameters (catalyst concentration, feedstock injection rate, furnace temperature, and gas flow rate) allows the production of nanotubes of a desired morphology. The fibres have been characterized with scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman Spectroscopy in order to confirm nanotube composition and orientation. The fibre possesses mechanical and electrical properties that rival or exceed those of present-day materials. Mechanical properties can be enhanced by increasing the degree of orientation of the nanotubes with the long axis of the fibre and by overall densification. These effects can be accomplished through drawing the fibre and solvent treatment.
引用
收藏
页码:59 / 62
页数:4
相关论文
共 50 条
  • [41] Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes
    Poetschke, Petra
    Andres, Timo
    Villmow, Tobias
    Pegel, Sven
    Bruenig, Harald
    Kobashi, Kazufumi
    Fischer, Dieter
    Haeussler, Liane
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (02) : 343 - 349
  • [42] Carbon nanotube nano-composite fibers and carbon nanotube fibers by wet spinning process
    Poulin, P
    Vigolo, B
    Bernier, P
    Paillet, M
    Launois, P
    Soutric, F
    Dieudonne, M
    Grac, M
    Gedda, K
    [J]. NANOTECH 2003, VOL 3, 2003, : 162 - 164
  • [43] Resistance-temperature dependence in carbon nanotube fibres
    Lekawa-Raus, Agnieszka
    Walczak, Kamil
    Kozlowski, Gregory
    Wozniak, Mariusz
    Hopkins, Simon C.
    Koziol, Krzysztof K.
    [J]. CARBON, 2015, 84 : 118 - 123
  • [44] Direct spinning of CNT fibres: Past, present and future scale up
    Smail, Fiona
    Boies, Adam
    Windle, Alan
    [J]. CARBON, 2019, 152 : 218 - 232
  • [45] Super-tough carbon-nanotube fibres
    Alan B. Dalton
    Steve Collins
    Edgar Muñoz
    Joselito M. Razal
    Von Howard Ebron
    John P. Ferraris
    Jonathan N. Coleman
    Bog G. Kim
    Ray H. Baughman
    [J]. Nature, 2003, 423 : 703 - 703
  • [46] Cellulose fibres with carbon nanotube networks for water sensing
    Qi, Haisong
    Liu, Jianwen
    Deng, Yinhu
    Gao, Shanglin
    Maeder, Edith
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) : 5541 - 5547
  • [47] Thermal properties of continuously spun carbon nanotube fibres
    Koziol, Krzysztof K.
    Janas, Dawid
    Brown, Elisabetta
    Hao, Ling
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 88 : 104 - 108
  • [48] Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation
    Qian, Hui
    Bismarck, Alexander
    Greenhalgh, Emile S.
    Shaffer, Milo S. P.
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (09) : 1107 - 1114
  • [49] Direct Oil Recovery from Saturated Carbon Nanotube Sponges
    Li, Xiying
    Xue, Yahui
    Zou, Mingchu
    Zhang, Dongxiao
    Cao, Anyuan
    Duan, Huiling
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) : 12337 - 12343
  • [50] Carbon Nanotube Resonator in Liquid
    Sawano, Shunichi
    Arie, Takayuki
    Akita, Seiji
    [J]. NANO LETTERS, 2010, 10 (09) : 3395 - 3398