Lithium Potential Mapping Using Artificial Neural Networks: A Case Study from Central Portugal

被引:27
|
作者
Koehler, Martin [1 ]
Hanelli, Delira [1 ]
Schaefer, Stefan [1 ]
Barth, Andreas [1 ]
Knobloch, Andreas [1 ]
Hielscher, Peggy [1 ]
Cardoso-Fernandes, Joana [2 ,3 ]
Lima, Alexandre [2 ,3 ]
Teodoro, Ana C. [2 ,3 ]
机构
[1] Beak Consultants GmbH, St Niclas Schacht 13, D-09599 Freiberg, Germany
[2] Univ Porto, Fac Sci, Dept Geosci Environm & Spatial Planning, P-4169007 Porto, Portugal
[3] Pole Univ Porto, Inst Earth Sci ICT, P-4169007 Porto, Portugal
基金
欧盟地平线“2020”;
关键词
lithium; mineral predictive mapping; exploration targeting; artificial neural networks; Portugal; CENTRAL-IBERIAN ZONE; MINERAL PROSPECTIVITY; GRANITIC PEGMATITES; SPAIN; CONSTRAINTS; EXHUMATION; SENTINEL-2; RESOURCES; COMPLEX; ARC;
D O I
10.3390/min11101046
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The growing importance and demand of lithium (Li) for industrial applications, in particular rechargeable Li-ion batteries, have led to a significant increase in exploration efforts for Li-bearing minerals. To ensure and expand a stable Li supply to the global economy, extensive research and exploration are necessary. Artificial neural networks (ANNs) provide powerful tools for exploration target identification. They can be cost-effectively applied in various geological settings. This article presents an integrated approach of Li exploration targeting using ANNs for data interpretation. Based on medium resolution geological maps (1:50,000) and stream sediment geochemical data (1 sample per 0.25 km(2)), the Li potential was calculated for an area of approximately 1200 km(2) in the surroundings of Bajoca Mine (Northeast Portugal). Extensive knowledge about geological processes leading to Li mineralisation (such as weathering conditions and diverse Li minerals) proved to be a determining factor in the exploration model. Furthermore, Sentinel-2 satellite imagery was used in a separate ANN model to identify potential Li mine sites exposed on the ground surface by analysing the spectral signature of surface reflectance in well-known Li locations. Finally, the results were combined to design a final map of predicted Li mineralisation occurrences in the study area. The proposed approach reveals how remote sensing data in combination with geological and geochemical data can be used for delineating and ranking exploration targets of almost any deposit type.</p>
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Forecasting Portugal global load with artificial neural networks
    Fidalgo, J. Nuno
    Matos, Manuel A.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 2, PROCEEDINGS, 2007, 4669 : 728 - +
  • [22] Predicting energy consumption using artificial neural networks: a case study of the UAE
    Eletter, Shorouq F.
    Elrefae, Ghaleb A.
    Belarbi, Abdelhafid K.
    Abu-Rashid, Jamal
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) : 137 - 154
  • [23] Landslide susceptibility mapping using logistic regression, random forests, and artificial neural networks: a case study in Mariana/MG, Brazil
    Xavier, Mateus Oliveira
    Barella, Cesar Falcao
    REVISTA BRASILEIRA DE GEOMORFOLOGIA, 2024, 25 (04)
  • [24] Database extension for digital soil mapping using artificial neural networks
    Bodaghabadi, Mohsen Bagheri
    Martinez-Casasnovas, Jose A.
    Borujeni, I. Esfandiarpour
    Salehi, M. H.
    Mohammadi, J.
    Toomanian, N.
    ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (18)
  • [25] Forward and reverse mapping for milling process using artificial neural networks
    Malghan, Rashmi L.
    Rao, Karthik M. C.
    Shettigar, Arun Kumar
    Rao, Shrikantha S.
    D'Souza, R. J.
    DATA IN BRIEF, 2018, 16 : 114 - 121
  • [26] The influence of sampling on landslide susceptibility mapping using artificial neural networks
    Gameiro, Samuel
    de Oliveira, Guilherme Garcia
    Guasselli, Laurindo Antonio
    GEOCARTO INTERNATIONAL, 2022,
  • [27] Assessment of predictive ability of artificial neural networks using holographic mapping
    Tompos, Andras
    Vegvari, Lajos
    Tfirst, Erno
    Margitfalvi, Jozsef L.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2007, 10 (02) : 121 - 134
  • [28] Digital soil mapping using reference area and artificial neural networks
    de Arruda, Gustavo Pais
    Dematte, Jose A. M.
    Chagas, Cesar da Silva
    Fiorio, Peterson Ricardo
    Souza, Arnaldo Barros e
    Fongaro, Caio Troula
    SCIENTIA AGRICOLA, 2016, 73 (03): : 266 - 273
  • [29] Database extension for digital soil mapping using artificial neural networks
    Mohsen Bagheri Bodaghabadi
    José A. Martínez-Casasnovas
    I. Esfandiarpour Borujeni
    M. H. Salehi
    J. Mohammadi
    N. Toomanian
    Arabian Journal of Geosciences, 2016, 9
  • [30] Predicting of liquefaction potential in soils using artificial neural networks
    Khozaghi, Seyed Sajjad Hossein
    Choobbasti, Asskar Jan Ali-Zadeh
    Electronic Journal of Geotechnical Engineering, 2007, 12 C