VINS-MKF: A Tightly-Coupled Multi-Keyframe Visual-Inertial Odometry for Accurate and Robust State Estimation

被引:5
|
作者
Zhang, Chaofan [1 ,2 ]
Liu, Yong [1 ]
Wang, Fan [1 ,2 ]
Xia, Yingwei [1 ]
Zhang, Wen [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Technol, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230026, Anhui, Peoples R China
关键词
state estimation; visual odometry; visual inertial fusion; multiple fisheye cameras; tightly coupled; MOTION; SLAM; NAVIGATION; VERSATILE;
D O I
10.3390/s18114036
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
State estimation is crucial for robot autonomy, visual odometry (VO) has received significant attention in the robotics field because it can provide accurate state estimation. However, the accuracy and robustness of most existing VO methods are degraded in complex conditions, due to the limited field of view (FOV) of the utilized camera. In this paper, we present a novel tightly-coupled multi-keyframe visual-inertial odometry (called VINS-MKF), which can provide an accurate and robust state estimation for robots in an indoor environment. We first modify the monocular ORBSLAM (Oriented FAST and Rotated BRIEF Simultaneous Localization and Mapping) to multiple fisheye cameras alongside an inertial measurement unit (IMU) to provide large FOV visual-inertial information. Then, a novel VO framework is proposed to ensure the efficiency of state estimation, by adopting a GPU (Graphics Processing Unit) based feature extraction method and parallelizing the feature extraction thread that is separated from the tracking thread with the mapping thread. Finally, a nonlinear optimization method is formulated for accurate state estimation, which is characterized as being multi-keyframe, tightly-coupled and visual-inertial. In addition, accurate initialization and a novel MultiCol-IMU camera model are coupled to further improve the performance of VINS-MKF. To the best of our knowledge, it's the first tightly-coupled multi-keyframe visual-inertial odometry that joins measurements from multiple fisheye cameras and IMU. The performance of the VINS-MKF was validated by extensive experiments using home-made datasets, and it showed improved accuracy and robustness over the state-of-art VINS-Mono.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
    Shan, Tixiao
    Englot, Brendan
    Ratti, Carlo
    Rus, Daniela
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5692 - 5698
  • [32] Progressive Multi-Modal Semantic Segmentation Guided SLAM Using Tightly-Coupled LiDAR-Visual-Inertial Odometry
    Xiao, Hanbiao
    Hu, Zhaozheng
    Lv, Chen
    Meng, Jie
    Zhang, Jianan
    You, Ji'an
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1645 - 1656
  • [33] Tightly-Coupled Visual-Inertial Localization and 3-D Rigid-Body Target Tracking
    Eckenhoff, Kevin
    Yang, Yulin
    Geneva, Patrick
    Huang, Guoquan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 1541 - 1548
  • [34] U-VIO: Tightly Coupled UWB Visual Inertial Odometry for Robust Localization
    Jung, KwangYik
    Shin, SungJae
    Myung, Hyun
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 272 - 283
  • [35] PLI-SLAM: A Tightly-Coupled Stereo Visual-Inertial SLAM System with Point and Line Features
    Teng, Zhaoyu
    Han, Bin
    Cao, Jie
    Hao, Qun
    Tang, Xin
    Li, Zhaoyang
    REMOTE SENSING, 2023, 15 (19)
  • [36] LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry
    Li, Xingxing
    Yan, Zhuohao
    Feng, Shaoquan
    Xia, Chunxi
    Li, Shengyu
    Zhou, Yuxuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 742 - 756
  • [37] An improved Multi-State Constraint Kalman Filter for Visual-Inertial Odometry
    Abdollahi, M. R.
    Pourtakdoust, Seid H.
    Nooshabadi, M. H. Yoosefian
    Pishkenari, H. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (15):
  • [38] FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
    Zheng, Chunran
    Zhu, Qingyan
    Xu, Wei
    Liu, Xiyuan
    Guo, Qizhi
    Zhang, Fu
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4003 - 4009
  • [39] A Real-Time CPU-GPU Embedded Implementation of a Tightly-Coupled Visual-Inertial Navigation System
    Sheikhpour, K. Soroush
    Atia, Mohamed
    IEEE ACCESS, 2022, 10 : 86384 - 86394
  • [40] SG-VIO: Monocular Visual-Inertial Odometry With Tightly Coupled Structural Lines and Gravity to Avoid Degeneracy
    Yao, Hexiong
    Ma, Yuexin
    Li, Peijing
    Zhai, Chunlei
    Song, Jiangbo
    Ouyang, Mingjun
    Dai, Zhiqiang
    Zhu, Xiangwei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 40244 - 40254