ASYMPTOTIC CONVERGENCE OF SOLUTIONS OF A SCALAR q-DIFFERENCE EQUATION WITH DOUBLE DELAYS

被引:1
|
作者
Bereketoglu, H. [1 ]
Kavgaci, M. E. [1 ]
Oztepe, G. S. [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
关键词
q-analogue; q-difference equation; delay difference equation; asymptotic convergence; CONSTANCY;
D O I
10.1007/s10474-015-0575-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sufficient conditions for the asymptotic convergence of all solutions of a scalar q-difference equation with double delays. Moreover, we prove that the limits of the solutions could be formulated in terms of the initial functions and the solution of a corresponding sum equation.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 50 条
  • [31] Applications of a generalized q-difference equation
    Jian-Ping Fang
    Advances in Difference Equations, 2014
  • [32] On the linear ordinary q-difference equation
    Adams, CR
    ANNALS OF MATHEMATICS, 1928, 30 : 195 - 205
  • [33] Remarks on a generalized q-difference equation
    Fang, Jian-Ping
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (10) : 934 - 953
  • [34] On a q-Difference Painlevé III Equation: II. Rational Solutions
    Kenji Kajiwara
    Journal of Nonlinear Mathematical Physics, 2003, 10 : 282 - 303
  • [35] Non-polynomial solutions to the q-difference form of the Harper equation
    Micu, C
    Papp, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (12): : 2881 - 2887
  • [36] Positive solutions for eigenvalue problems of fractional q-difference equation with ϕ-Laplacian
    Jufang Wang
    Changlong Yu
    Boya Zhang
    Si Wang
    Advances in Difference Equations, 2021
  • [37] Positive solutions for eigenvalue problems of fractional q-difference equation with φ-Laplacian
    Wang, Jufang
    Yu, Changlong
    Zhang, Boya
    Wang, Si
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [38] Explicit polynomial solutions to the q-difference form of the Harper-equation
    Micu, C
    Papp, E
    MODERN PHYSICS LETTERS B, 1997, 11 (18): : 773 - 778
  • [39] Existence of positive solutions of nonlinear fractional q-difference equation with parameter
    Xinhui Li
    Zhenlai Han
    Shurong Sun
    Advances in Difference Equations, 2013
  • [40] On a q-difference Painleve III equation:: II.: Rational solutions
    Kajiwara, K
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (03) : 282 - 303