ASYMPTOTIC CONVERGENCE OF SOLUTIONS OF A SCALAR q-DIFFERENCE EQUATION WITH DOUBLE DELAYS

被引:1
|
作者
Bereketoglu, H. [1 ]
Kavgaci, M. E. [1 ]
Oztepe, G. S. [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
关键词
q-analogue; q-difference equation; delay difference equation; asymptotic convergence; CONSTANCY;
D O I
10.1007/s10474-015-0575-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sufficient conditions for the asymptotic convergence of all solutions of a scalar q-difference equation with double delays. Moreover, we prove that the limits of the solutions could be formulated in terms of the initial functions and the solution of a corresponding sum equation.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 50 条
  • [1] Asymptotic convergence of solutions of a scalar q-difference equation with double delays
    H. Bereketoglu
    M. E. Kavgaci
    G. S. Oztepe
    Acta Mathematica Hungarica, 2016, 148 : 279 - 293
  • [2] POSITIVE SOLUTIONS OF q-DIFFERENCE EQUATION
    El-Shahed, Moustafa
    Hassan, H. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1733 - 1738
  • [3] On existence of meromorphic solutions for nonlinear q-difference equation
    Peng, Changwen
    Huang, Huawei
    Tao, Lei
    SCIENCEASIA, 2023, 49 (03): : 369 - 376
  • [4] On Properties of Meromorphic Solutions for Certain q-Difference Equation
    Lei TAO
    Jianren LONG
    JournalofMathematicalResearchwithApplications, 2023, 43 (01) : 83 - 90
  • [5] ON THE EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR q-DIFFERENCE EQUATION
    Hassan, H. A.
    El-Shahed, Moustafa
    Mansour, Z. S.
    FIXED POINT THEORY, 2012, 13 (02): : 517 - 526
  • [6] NONDECREASING BOUNDED CONTINUOUS SOLUTIONS OF A q-DIFFERENCE EQUATION
    Zhao, Hou yu
    Guo, Shan shan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [7] Quicksilver Solutions of a q-Difference First Painleve Equation
    Joshi, Nalini
    STUDIES IN APPLIED MATHEMATICS, 2015, 134 (02) : 233 - 251
  • [8] Irregular part of solutions for a linear q-difference equation
    Essadiq, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (02) : 139 - 144
  • [9] On existence of meromorphic solutions for certain q-difference equation
    Peng, Changwen
    Chen, Zongxuan
    Huang, Huawei
    Tao, Lei
    SCIENCEASIA, 2023, 49 (01): : 49 - 55
  • [10] Asymptotic behavior of solutions of fractional nabla q-difference equations
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (01) : 21 - 28