An approximation algorithm for the balanced capacitated minimum spanning tree problem

被引:0
|
作者
Fallah, H. [1 ]
Didehvar, F. [1 ]
Rahmati, F. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, POB 15875-4418, Tehran, Iran
关键词
Capacitated minimum spanning tree problem; Load balancing; Approximation algorithms; PTAS; DESIGN; HEURISTICS; COMPLEXITY; NETWORKS;
D O I
10.24200/sci.2020.54242.3663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Capacitated Minimum Spanning Tree Problem (CMSTP), a well-known combinatorial optimization problem, holds the central place in telecommunication network design. This problem involves finding a minimum cost spanning tree with an extra cardinality limitation on the orders of the subtrees incident to a certain root node. The Balanced Capacitated Minimum Spanning Tree Problem (BCMSTP) is a special case that aims to balance the orders of the subtrees. This problem is an NP-hard one and presents two approximation algorithms in this paper. By considering the maximum order of the subtrees Q, a (3 - 1/Q)-approximation algorithm was provided to find a balanced solution. This result was improved to a (2.5 + epsilon) approximation algorithm (for every given epsilon > 0) in the 2d-Euclidean spaces. Also, a Polynomial Time Approximation Scheme (PTAS) was presented for CMSTP. (C) 2021 Sharif University of Technology. All rights reserved.
引用
收藏
页码:1479 / 1492
页数:14
相关论文
共 50 条
  • [21] AnO(logk)-approximation algorithm for thek minimum spanning tree problem in the plane
    N. Garg
    D. S. Hochbaum
    [J]. Algorithmica, 1997, 18 : 111 - 121
  • [22] An algorithm for inverse minimum spanning tree problem
    Zhang, JH
    Xu, SJ
    Ma, ZF
    [J]. OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01): : 69 - 84
  • [23] Heuristics for the multi-level capacitated minimum spanning tree problem
    Pappas, Christos A.
    Anadiotis, Angelos-Christos G.
    Papagianni, Chrysa A.
    Venieris, Iakovos S.
    [J]. OPTIMIZATION LETTERS, 2014, 8 (02) : 435 - 446
  • [24] Two heuristics for the capacitated minimum spanning tree problem with time windows
    Kritikos, Manolis N.
    Ioannou, George
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2019, 70 (04) : 555 - 567
  • [25] Heuristics for the multi-level capacitated minimum spanning tree problem
    Christos A. Pappas
    Angelos-Christos G. Anadiotis
    Chrysa A. Papagianni
    Iakovos S. Venieris
    [J]. Optimization Letters, 2014, 8 : 435 - 446
  • [26] A tabu search algorithm for the capacitated shortest spanning tree problem
    Sharaiha, YM
    Gendreau, M
    Laporte, G
    Osman, IH
    [J]. NETWORKS, 1997, 29 (03) : 161 - 171
  • [27] Approximation algorithms for capacitated partial inverse maximum spanning tree problem
    Li, Xianyue
    Zhang, Zhao
    Yang, Ruowang
    Zhang, Heping
    Du, Ding-Zhu
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (02) : 319 - 340
  • [28] Approximation algorithms for capacitated partial inverse maximum spanning tree problem
    Xianyue Li
    Zhao Zhang
    Ruowang Yang
    Heping Zhang
    Ding-Zhu Du
    [J]. Journal of Global Optimization, 2020, 77 : 319 - 340
  • [29] A dandelion-encoded evolutionary algorithm for the delay-constrained capacitated minimum spanning tree problem
    Perez-Bellido, Angel M.
    Salcedo-Sanz, Sancho
    Ortiz-Garcia, Emilio G.
    Portilla-Figueras, Antonio
    Naldi, Maurizio
    [J]. COMPUTER COMMUNICATIONS, 2009, 32 (01) : 154 - 158
  • [30] An O(log k)-Approximation Algorithm for the k Minimum Spanning Tree Problem in the Plane
    Garg, N.
    Hochbaum, D.S.
    [J]. Algorithmica (New York), 1997, 18 (01): : 111 - 121