A Content-based Image Retrieval System Based On Convex Hull Geometry

被引:0
|
作者
Mathew, Santhosh P. [1 ]
Balas, Valentina E. [2 ]
Zachariah, K. P. [1 ]
机构
[1] Saintgits Coll Engn, Dept Comp Sci, Kottayam, Kerala, India
[2] Aurel Vlaicu Univ Arad, Dept Automat & Appl Software, Arad, Romania
关键词
Image Retrieval; Shape Signature; Image Segmentation; Edge detection; Convex hull; Area ratio; SHAPE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developments in data storage technologies and image acquisition methods have led to the assemblage of large data banks. Management of these large chunks of data in an efficient manner is a challenge. Content-based Image Retrieval (CBIR) has emerged as a solution to tackle this problem. CBIR extracts images that match the query image from large image databases, based on the content. In this paper, a novel approach of comparing the convex hull geometry of the query image to that of the database image in terms of a relative metric which is denoted as the Convex Hull Area Ratio (CHAR) is used. The metric CHAR is the ratio of the area of the intersection of the two convex hulls to the area of their union. Convex hull shape polygon is extracted from the database images and the coordinate values are stored in the feature library. When a query image is given, the convex hull values are extracted in the same fashion. Ratio of the intersected area to union area of the two convex hulls (CHAR) are found and stored in an array. Subsequently, similarity measurement is performed and the maximum value of the CHAR indicates the closest match. Thus, the database images that are relevant to the given query image are retrieved. Scale and translational invariance have been preserved by a suitable co-ordinate transformation. The proposed CBIR technique is evaluated by querying different images and the retrieval efficiency is evaluated by determining precision-recall values for the retrieval results.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [41] Content-based ultrasound image retrieval
    Kwak, DM
    Kim, BS
    Park, CH
    Kim, SJ
    Kim, YM
    Park, KH
    METMBS'01: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2001, : 512 - 517
  • [42] Content-based image retrieval - A survey
    Choras, Ryszard S.
    BIOMETRICS, COMPUTER SECURITY SYSTEMS AND ARTIFICIAL INTELLIGENCE APPLICATIONS, 2006, : 31 - 44
  • [43] Content-Based Histopathological Image Retrieval
    Nunez-Fernandez, Camilo
    Farias, Humberto
    Solar, Mauricio
    SENSORS, 2025, 25 (05)
  • [44] Study on Content-Based of Image Retrieval
    Zhang, Chi
    Huang, Lei
    LISS 2013, 2015, : 591 - 594
  • [45] Content-based retinal image retrieval
    Sukhia, Komal Nain
    Riaz, Muhammad Mohsin
    Ghafoor, Abdul
    IET IMAGE PROCESSING, 2019, 13 (09) : 1525 - 1534
  • [46] Localized content-based image retrieval
    Rahmani, Rouhollah
    Goldman, Sally A.
    Zhang, Hui
    Cholleti, Sharath R.
    Fritts, Jason E.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (11) : 1902 - 1912
  • [47] Content-based image retrieval speedup
    Fadaei, Sadegh
    Rashno, Abdolreza
    Rashno, Elyas
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [48] Image coding for content-based retrieval
    Swanson, MD
    Hosur, S
    Tewfik, AH
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 4 - 15
  • [49] Content-based image retrieval in astronomy
    Csillaghy, A
    Hinterberger, H
    Benz, AO
    INFORMATION RETRIEVAL, 2000, 3 (03): : 229 - 241
  • [50] Content-based image retrieval methods
    Vassilieva, N. S.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (03) : 158 - 180