Existence and uniqueness of limit cycles for generalized φ-Laplacian Lienard equations

被引:11
|
作者
Perez-Gonzalez, S. [1 ]
Torregrosa, J. [2 ]
Torres, P. J. [3 ]
机构
[1] Univ Estadual Paulista, Dept Matemat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, Edifici C, E-08193 Barcelona, Spain
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Existence and uniqueness; Periodic orbits; Limit cycles; phi-Laplacian Lienard equations; Generalized Lienard. equations; PERIODIC-SOLUTIONS; OSCILLATIONS;
D O I
10.1016/j.jmaa.2016.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lienard equation x" + f (x)x' + g(x) = 0 appears as a model in many problems of science and engineering. Since the first half of the 20th century, many papers have appeared providing existence and uniqueness conditions for limit cycles of Lienard equations. In this paper we extend some of these results for the case of the generalized phi-Laplacian Lienard equation, (phi(x'))' f(x)psi(x') + g(x) = 0. This generalization appears when derivations of the equation different from the classical one are considered. In particular, the relativistic van der Pol equation, (x'/root 1 - (x'/c)(2))' + mu(x(2) - 1)x' + x = 0, has a unique periodic orbit when mu = 0. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:745 / 765
页数:21
相关论文
共 50 条
  • [41] On the uniqueness of limit cycles in discontinuous Lienard-type systems
    Jiang, Fangfang
    Sun, Jitao
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (71) : 1 - 12
  • [42] UNIQUENESS OF LIMIT-CYCLES FOR A CLASS OF LIENARD SYSTEMS WITH APPLICATIONS
    COLL, B
    GASULL, A
    LLIBRE, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 141 (02) : 442 - 450
  • [43] UNIQUENESS OF LIMIT-CYCLES IN A LIENARD-TYPE SYSTEM
    HUANG, XC
    SUN, PT
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 348 - 359
  • [44] A note on ''uniqueness of limit cycles in a Lienard-type system''
    Kooij, RE
    Jianhua, SH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 260 - 276
  • [45] ON THE EXISTENCE AND UNIQUENESS OF A LIMIT CYCLE FOR A LIENARD SYSTEM WITH A DISCONTINUITY LINE
    Jiang, Fangfang
    Shi, Junping
    Wang, Qing-guo
    Sun, Jitao
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2509 - 2526
  • [46] Multiple canard cycles in generalized Lienard equations
    Dumortier, F
    Roussarie, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (01) : 1 - 29
  • [47] LIMIT-CYCLES OF LIENARD EQUATIONS WITH NONLINEAR DAMPING
    URBINA, AM
    DELABARRA, GL
    DELABARRA, ML
    CANAS, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 251 - 256
  • [48] ON GENERALIZED LIENARD EQUATION AND THE UNIQUENESS OF LIMIT CYCLES IN GAUSS-TYPE PREDATOR-PREY SYSTEM
    邵明华
    [J]. Annals of Applied Mathematics, 1995, (03) : 316 - 325
  • [49] On the limit cycles for a class of generalized Lienard differential systems
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (01): : 1 - 8
  • [50] 2 THEOREMS ON EXISTENCE OF LIMIT-CYCLES OF THE LIENARD EQUATION
    CHEN, XD
    HUANG, QC
    [J]. KEXUE TONGBAO, 1982, 27 (03): : 344 - 345