Gradient-domain Volumetric Photon Density Estimation

被引:17
|
作者
Gruson, Adrien [1 ,2 ]
Binh-Son Hua [1 ,3 ]
Vibert, Nicolas [4 ]
Nowrouzezahrai, Derek [4 ]
Hachisuka, Toshiya [1 ]
机构
[1] Univ Tokyo, Tokyo, Japan
[2] CNRS, JFLI, UMI 3527, Tokyo, Japan
[3] Singapore Univ Technol & Design, Singapore, Singapore
[4] McGill Univ, Montreal, PQ, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 04期
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
gradient rendering; participating media;
D O I
10.1145/3197517.3201363
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Gradient-domain rendering can improve the convergence of surface-based light transport by exploiting smoothness in image space. Scenes with participating media exhibit similar smoothness and could potentially benefit from gradient-domain techniques. We introduce the first gradient-domain formulation of image synthesis with homogeneous participating media, including four novel and efficient gradient-domain volumetric density estimation algorithms. We show that naive extensions of gradient domain path-space and density estimation methods to volumetric media, while functional, can result in inefficient estimators. Focussing on point-, beam- and plane-based gradient-domain estimators, we introduce a novel shift mapping that eliminates redundancies in the naive formulations using spatial relaxation within the volume. We show that gradient-domain volumetric rendering improve convergence compared to primal domain state-of-the-art, across a suite of scenes. Our formulation and algorithms support progressive estimation and are easy to incorporate atop existing renderers.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gradient-Domain Photon Density Estimation
    Hua, Binh-Son
    Gruson, Adrien
    Nowrouzezahrai, Derek
    Hachisuka, Toshiya
    COMPUTER GRAPHICS FORUM, 2017, 36 (02) : 31 - 38
  • [2] Unsupervised Image Reconstruction for Gradient-Domain Volumetric Rendering
    Xu, Zilin
    Sun, Qiang
    Wang, Lu
    Xu, Yanning
    Wang, Beibei
    COMPUTER GRAPHICS FORUM, 2020, 39 (07) : 193 - 203
  • [3] Gradient-Domain Path Reusing
    Bauszat, Pablo
    Petitjean, Victor
    Eisemann, Elmar
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):
  • [4] Gradient-Domain Path Tracing
    Kettunen, Markus
    Manzi, Marco
    Aittala, Miika
    Lehtinen, Jaakko
    Durand, Fredo
    Zwicker, Matthias
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [5] A Survey on Gradient-Domain Rendering
    Hua, Binh-Son
    Gruson, Adrien
    Petitjean, Victor
    Zwicker, Matthias
    Nowrouzezahrai, Derek
    Eisemann, Elmar
    Hachisuka, Toshiya
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 455 - 472
  • [6] Gradient-Domain PET Reconstruction
    Magdics, Milan
    Szirmay-Kalos, Laszlo
    Neumann, Laszlo
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [7] Temporal Gradient-Domain Path Tracing
    Manzi, Marco
    Kettunen, Markus
    Durand, Fredo
    Zwicker, Matthias
    Lehtinen, Jaakko
    ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06):
  • [8] Hybrid gradient-domain image denoising
    Zhang, Xiaobo
    Feng, Xiangchu
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2014, 68 (03) : 179 - 185
  • [9] Gradient-Domain Metropolis Light Transport
    Lehtinen, Jaakko
    Karras, Tero
    Laine, Samuli
    Aittala, Miika
    Durand, Fredo
    Aila, Timo
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [10] Gradient Outlier Removal for Gradient-Domain Path Tracing
    Ha, Saerom
    Oh, Sojin
    Back, Jonghee
    Yoon, Sung-Eui
    Moon, Bochang
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 245 - 253