First-principles calculations on crystal structure and physical properties of rhenium dicarbide

被引:3
|
作者
Zhang, Meiguang [1 ]
Yan, Haiyan [2 ]
Zhang, Gangtai [1 ]
Wei, Qun [3 ]
Wang, Hui [4 ]
机构
[1] Baoji Univ Arts & Sci, Dept Phys & Informat Technol, Baoji 721016, Peoples R China
[2] Baoji Univ Arts & Sci, Shaanxi Key Lab Phytochem, Dept Chem & Chem Engn, Baoji 721013, Peoples R China
[3] Xidian Univ, Sch Sci, Xian 710071, Peoples R China
[4] Jilin Univ, Natl Lab Superhard Mat, Changchun 130012, Peoples R China
关键词
Transition metal carbides; Structural stability; Ultra-incompressible; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; OSMIUM BORIDES; MECHANICAL-PROPERTIES; 1ST PRINCIPLES; SUPERHARD; DIBORIDE; STABILITY; NITRIDES; LOCALIZATION;
D O I
10.1016/j.ssc.2012.03.012
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Structural stability, elastic behavior, hardness, and chemical bonding of ideal stoichiometric rhenium dicarbide (ReC2) in the ReB2, ReSi2, Hex-I, Hex-II, and Tet-I structures have been systematically studied using first-principles calculations. The results suggest that all these structures are mechanically stable and ultra-incompressible characterized by large bulk moduli. Formation enthalpy calculations demonstrated that they are metastable under ambient conditions, and the relative stability of the examined candidates decreases in the following sequence: Hex-I > Hex-II > ReB2 > Tet-I > ReSi2. The hardness calculations showed that these structures are all hard materials, among which the Hex-I exhibits the largest Vickers hardness of 32.2 GPa, exceeding the hardness of alpha-SiO2 (30.6 GPa) and beta-Si3N4 (30.3 GPa). Density of states and electronic localization function analysis revealed that the strong C-C and C-Re covalent bonds are major driving forces for their high bulk and shear moduli as well as small Poisson's ratio. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1030 / 1035
页数:6
相关论文
共 50 条
  • [31] Electronic structure and thermoelectric transport properties of AgTITe: First-principles calculations
    Oh, M. W.
    Wee, D. M.
    Park, S. D.
    Kim, B. S.
    Lee, H. W.
    PHYSICAL REVIEW B, 2008, 77 (16)
  • [32] Electronic structure and magnetic properties of MnTe from first-principles calculations
    Wang Bu-Sheng
    Liu Yong
    ACTA PHYSICA SINICA, 2016, 65 (06)
  • [33] First-principles calculations on the electronic structure and cohesive properties of titanium stannides
    Wang, X. F.
    Li, W.
    Fang, G. P.
    Wu, C. W.
    Lin, J. G.
    INTERMETALLICS, 2009, 17 (09) : 768 - 773
  • [34] First-principles calculations for the structure and mechanical properties of PtN2
    Li De-Hua
    Zhu Xiao-Ling
    Su Wen-Jin
    Cheng Xin-Lu
    ACTA PHYSICA SINICA, 2010, 59 (03) : 2004 - 2009
  • [35] Crystal structure of Mg3Pd from first-principles calculations
    邓永和
    王桃芬
    张卫兵
    唐璧玉
    曾小勤
    丁文江
    Transactions of Nonferrous Metals Society of China, 2008, (02) : 416 - 420
  • [36] Crystal structure of Mg3Pd from first-principles calculations
    Deng Yong-he
    Wang Tao-fen
    Zhang Wei-bing
    Tang Bi-yu
    Zeng Xiao-qin
    Ding Wen-jiang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2008, 18 (02) : 416 - 420
  • [37] First-principles calculations on electronic structure of PbTe
    Dow, H. S.
    Oh, M. W.
    Kim, B. S.
    Park, S. D.
    Lee, H. W.
    Wee, D. M.
    PROCEEDINGS ICT 07: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2008, : 90 - 93
  • [38] First-principles calculations on the electronic structure of FeS
    Koutti, L
    Bengone, O
    Hugel, J
    COMPUTATIONAL MATERIALS SCIENCE, 2000, 17 (2-4) : 169 - 173
  • [39] First-principles calculations of high-pressure physical properties anisotropy for magnesite
    Zi-Jiang Liu
    Xiao-Wei Sun
    Cai-Rong Zhang
    Shun-Jing Zhang
    Zheng-Rong Zhang
    Neng-Zhi Jin
    Scientific Reports, 12
  • [40] First-principles calculations of high-pressure physical properties anisotropy for magnesite
    Liu, Zi-Jiang
    Sun, Xiao-Wei
    Zhang, Cai-Rong
    Zhang, Shun-Jing
    Zhang, Zheng-Rong
    Jin, Neng-Zhi
    SCIENTIFIC REPORTS, 2022, 12 (01)