Crazing of nanocomposites with polymer-tethered nanoparticles

被引:32
|
作者
Meng, Dong [1 ,5 ]
Kumar, Sanat K. [1 ]
Ge, Ting [2 ]
Robbins, Mark O. [3 ]
Grest, Gary S. [4 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[2] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[3] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[4] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[5] Mississippi State Univ, Dave C Swalm Sch Chem Engn, Starkville, MS 39762 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 145卷 / 09期
基金
美国国家科学基金会;
关键词
MECHANICAL-PROPERTIES; PHASE-BEHAVIOR; FRACTURE; COMPOSITES; FAILURE; ENTANGLEMENTS; SIMULATIONS; SURFACE;
D O I
10.1063/1.4961872
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibits void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of "grafted chain" sections of approximate to 100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. The dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N(e), where N-e is the entanglement length. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Thin film buckling in polymer-tethered membranes
    Hussain, Noor F.
    Johnson, Merrell A.
    Siegel, Amanda P.
    Jordan, Rainer
    Naumann, Christoph A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [22] Adsorption of Polymer-Tethered Particles on Solid Surfaces
    Staszewski, Tomasz
    Borowko, Malgorzata
    Boguta, Patrycja
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (06): : 1341 - 1351
  • [23] Using polymer-tethered fullerenes in bulk hetereojunctions
    Moore, Joshua A.
    Berry, Brian C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [24] Phase behavior of repulsive polymer-tethered colloids
    Bozorgui, Behnaz
    Sen, Maya
    Miller, William L.
    Pamies, Josep C.
    Cacciuto, Angelo
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (01):
  • [25] Self-assembly of polymer-tethered nanorods
    Horsch, MA
    Zhang, ZL
    Glotzer, SC
    PHYSICAL REVIEW LETTERS, 2005, 95 (05)
  • [26] Ammonium binding resins: Polymer-tethered tetraphenylborate
    Cameron, NS
    Brown, GR
    Cameron, TS
    CHEMISTRY OF MATERIALS, 2002, 14 (04) : 1622 - 1629
  • [27] Photoelectrochemical Processes in Polymer-Tethered CdSe Nanocrystals
    Shallcross, R. Clayton
    D'Ambruoso, Gemma D.
    Pyun, Jeffrey
    Armstrong, Neal R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (08) : 2622 - 2632
  • [28] Fabrication of Oriented Colloidal Crystals from Capillary Assembly of Polymer-Tethered Gold Nanoparticles
    Gao, Yutong
    Zhou, Youshuang
    Xu, Xiangyun
    Chen, Chungui
    Xiong, Bijin
    Zhu, Jintao
    SMALL, 2022, 18 (13)
  • [29] Quaternization-Assisted Assembly of Polymer-Tethered Gold Nanoparticles into Superlattices with a Tunable Structure
    Yu, Xin
    Li, Jinlan
    Yan, Nan
    Jiang, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (21): : 10253 - 10260
  • [30] Flow hydrodynamics-dependent assembly of polymer-tethered gold nanoparticles in microfluidic channels
    Mao, Xi
    Tan, Zhengping
    Lan, Wei
    Wang, Huayang
    Tan, Haiying
    Li, Fan
    Wang, Ke
    Wu, Ming
    Luo, Xiaobing
    Zhang, Lianbin
    Xu, Jiangping
    Zhu, Jintao
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (11) : 3240 - 3250