Simplification of Node Position Data for Interactive Visualization of Dynamic Data Sets

被引:4
|
作者
Rosen, Paul [1 ]
Popescu, Voicu [2 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
Simplification of node positions; trajectory simplification; trajectory clustering; rigid body decomposition; interactive visualization; simulation data compression; GEOMETRIC COMPRESSION; LOSSLESS COMPRESSION; SPECTRAL COMPRESSION; TRANSMISSION;
D O I
10.1109/TVCG.2011.268
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose to aid the interactive visualization of time-varying spatial data sets by simplifying node position data over the entire simulation as opposed to over individual states. Our approach is based on two observations. The first observation is that the trajectory of some nodes can be approximated well without recording the position of the node for every state. The second observation is that there are groups of nodes whose motion from one state to the next can be approximated well with a single transformation. We present data set simplification techniques that take advantage of this node data redundancy. Our techniques are general, supporting many types of simulations, they achieve good compression factors, and they allow rigorous control of the maximum node position approximation error. We demonstrate our approach in the context of finite element analysis data, of liquid flow simulation data, and of fusion simulation data.
引用
下载
收藏
页码:1537 / 1548
页数:12
相关论文
共 50 条
  • [31] Interactive Visualization of Sport Climbing Data
    Qiu, Fangze
    Li, Yue
    HUMAN-COMPUTER INTERACTION - INTERACT 2023, PT IV, 2023, 14145 : 507 - 511
  • [32] Interactive Visualization of Hierarchically Structured Data
    Sankaran, Kris
    Holmes, Susan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (03) : 553 - 563
  • [33] Interactive Data Visualization in Jupyter Notebooks
    Piazentin Ono, Jorge
    Freire, Juliana
    Silva, Claudio T.
    COMPUTING IN SCIENCE & ENGINEERING, 2021, 23 (02) : 99 - 106
  • [34] Evaluation on interactive visualization data with scatterplots
    Nguyen, Quang Vinh
    Miller, Natalie
    Arness, David
    Huang, Weidong
    Huang, Mao Lin
    Simoff, Simeon
    Visual Informatics, 2020, 4 (04) : 1 - 10
  • [35] Interactive big data visualization and analytics
    Auber, David
    Bikakis, Nikos
    Chrysanthis, Panos K.
    Papastefanatos, George
    Sharaf, Mohamed
    Big Data Research, 2024, 36
  • [36] Preface: Intelligent interactive data visualization
    Hammer, Barbara
    Keim, Daniel
    Lawrence, Neil
    Lebanon, Guy
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 1 - 3
  • [37] SKYDIVE: An Interactive Data Visualization Engine
    Gryz, Jarek
    Godfrey, Parke
    Lasek, Piotr
    Razavi, Nasim
    2015 IEEE 5TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV), 2015, : 129 - 130
  • [38] Evaluation on interactive visualization data with scatterplots
    Quang Vinh Nguyen
    Miller, Natalie
    Arness, David
    Huang, Weidong
    Huang, Mao Lin
    Simoff, Simeon
    VISUAL INFORMATICS, 2020, 4 (04): : 1 - 10
  • [39] Interactive data visualization qualitative research
    Horney, Mark
    Computer Graphics (ACM), 1994, 28 (01): : 38 - 40
  • [40] Interactive Maps for UNOS Data Visualization
    Rivard, A.
    Gentili, M.
    Koizumi, N.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2019, 38 (04): : S398 - S398