Two-fluid model of the truncated Euler equations

被引:22
|
作者
Krstulovic, Giorgio [1 ]
Brachet, Marc-Etienne
机构
[1] Ecole Normale Super, Phys Stat Lab, CNRS, F-75231 Paris, France
关键词
truncated Euler equations; absolute equilibrium; EDQNM;
D O I
10.1016/j.physd.2007.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A phenomenological two-fluid model of the (time-reversible) spectrally-truncated 3D Euler equation is proposed. The thermalized small scales are first shown to be quasi-normal. The effective viscosity and thermal diffusion are then determined, using EDQNM Closure and Monte-Carlo numerical computations. Finally, the model is validated by comparing its dynamics with that of the original truncated Euler equation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2015 / 2019
页数:5
相关论文
共 50 条
  • [31] Some Applications of a Two-Fluid Model
    Crouzet, Fabien
    Daude, Frederic
    Galon, Pascal
    Herard, Jean-Marc
    Hurisse, Olivier
    Liu, Yujie
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 837 - 845
  • [32] Vortex dynamics in the two-fluid model
    Thouless, DJ
    Geller, MR
    Vinen, WF
    Fortin, JY
    Rhee, SW
    PHYSICAL REVIEW B, 2001, 63 (22) : 2245041 - 22450410
  • [33] Two-fluid model with interface sharpening
    Strubelj, L.
    Tiselj, I.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (05) : 575 - 590
  • [34] QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA
    Li, Min
    Pu, Xueke
    Wang, Shu
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 879 - 895
  • [35] Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations
    Peng, Yue-Jun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 737 - 759
  • [36] A two-fluid SPH model for landslides
    Ghaitanellis, A.
    Violeau, D.
    Leroy, A.
    Joly, A.
    Ferrand, M.
    SUSTAINABLE HYDRAULICS IN THE ERA OF GLOBAL CHANGE: ADVANCES IN WATER ENGINEERING AND RESEARCH, 2016, : 672 - 677
  • [37] On Equilibria of the Two-fluid Model in Magnetohydrodynamics
    Dimitri J. Frantzeskakis
    Ioannis G. Stratis
    Athanasios N. Yannacopoulos
    Mathematical Physics, Analysis and Geometry, 2004, 7 : 97 - 117
  • [38] Magnetorotational instability in a two-fluid model
    Ren, Haijun
    Cao, Jintao
    Wu, Zhengwei
    Chu, Paul K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (06)
  • [39] A two-fluid, MHD coronal model
    Suess, ST
    Wang, AH
    Wu, ST
    Poletto, G
    McComas, DJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A3) : 4697 - 4708
  • [40] The combined non-relativistic and quasi-neutral limit of two-fluid Euler-Maxwell equations
    Li, Yachun
    Peng, Yue-Jun
    Xi, Shuai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3249 - 3265