A Lasso-Type Approach for Estimation and Variable Selection in Single Index Models

被引:35
|
作者
Zeng, Peng [1 ]
He, Tianhong [2 ]
Zhu, Yu [2 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Local linear smoothing; m-fold cross-validation; Solution path; SLICED INVERSE REGRESSION; DIMENSION REDUCTION;
D O I
10.1198/jcgs.2011.09156
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The single index model is a natural extension of the linear regression model for applications in which linearity does not hold. In this article, we propose a penalized local linear smoothing method, called sim-lasso, for estimation and variable selection under the single index model. The sim-lasso method penalizes the derivative of the link function and thus can be considered an extension of the usual lasso. Computational algorithms are developed for calculating the sim-lasso estimates and solution paths. The properties of the solution paths are also investigated. Simulation study and real data application demonstrate the excellent performance of the sim-lasso method. Supplemental materials for the article are available online.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [31] LASSO-type penalization in the framework of generalized additive models for location, scale and shape
    Groll, Andreas
    Hambuckers, Julien
    Kneib, Thomas
    Umlauf, Nikolaus
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 : 59 - 73
  • [32] B spline variable selection for the single index models
    Jianbo Li
    Yuan Li
    Riquan Zhang
    [J]. Statistical Papers, 2017, 58 : 691 - 706
  • [33] Variable selection in a class of single-index models
    Li-Ping Zhu
    Lin-Yi Qian
    Jin-Guan Lin
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 1277 - 1293
  • [34] B spline variable selection for the single index models
    Li, Jianbo
    Li, Yuan
    Zhang, Riquan
    [J]. STATISTICAL PAPERS, 2017, 58 (03) : 691 - 706
  • [35] Dirichlet Lasso: A Bayesian approach to variable selection
    Das, Kiranmoy
    Sobel, Marc
    [J]. STATISTICAL MODELLING, 2015, 15 (03) : 215 - 232
  • [36] WLAD-LASSO method for robust estimation and variable selection in partially linear models
    Yang, Hu
    Li, Ning
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (20) : 4958 - 4976
  • [37] Local Walsh-average-based estimation and variable selection for single-index models
    Jing Yang
    Fang Lu
    Hu Yang
    [J]. Science China Mathematics, 2019, 62 : 1977 - 1996
  • [38] Estimation and variable selection for partial linear single-index distortion measurement errors models
    Zhang, Jun
    [J]. STATISTICAL PAPERS, 2021, 62 (02) : 887 - 913
  • [39] Robust modal estimation and variable selection for single-index varying-coefficient models
    Yang, Jing
    Yang, Hu
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (04) : 2976 - 2997
  • [40] Estimation and variable selection for partial linear single-index distortion measurement errors models
    Jun Zhang
    [J]. Statistical Papers, 2021, 62 : 887 - 913