Characterization of acoustic droplet formation in a microfluidic flow-focusing device

被引:18
|
作者
Cheung, Yin Nee [1 ]
Qiu, Huihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 06期
关键词
T-JUNCTION; BUBBLES;
D O I
10.1103/PhysRevE.84.066310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Local control of droplet formation with acoustic actuation in a microfluidic flow-focusing device is investigated, and the effects of acoustic voltage, frequency, flow-rate ratio, fluid viscosity, and flow vorticity are characterized. Acoustic actuation is provided to affect droplet breakup in the squeezing regime by imposing periodic oscillation to the fluid-fluid interface and, therefore, a periodic change in its curvature at the cross-junction of the device. Time reduction is observed for the three key stages of droplet breakup in the squeezing regime: dispersed phase flow-front advancement into the orifice, pressure buildup upstream and within the orifice together with liquid inflation downstream, and finally the thinning and pinch-off of the liquid thread. It is found that acoustic actuation has less of an effect on droplet size for the continuous phase with a higher viscosity due to the restrained interfacial vibration under a high shear stress environment. Periodic velocity flow fields within the dispersed phase at different phases of one oscillation cycle are calculated based on the results from phase-averaged microresolution-particle-image velocimetry (mu PIV). The oscillation paths for the points of maximum vorticities of phase-averaged velocity components are traced, which reveals that the motion is mainly along the y direction.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The effect of interfacial tension on droplet formation in flow-focusing microfluidic device
    Peng, Lu
    Yang, Min
    Guo, Shi-shang
    Liu, Wei
    Zhao, Xing-zhong
    [J]. BIOMEDICAL MICRODEVICES, 2011, 13 (03) : 559 - 564
  • [2] The effect of interfacial tension on droplet formation in flow-focusing microfluidic device
    Lu Peng
    Min Yang
    Shi-shang Guo
    Wei Liu
    Xing-zhong Zhao
    [J]. Biomedical Microdevices, 2011, 13 : 559 - 564
  • [3] Numerical Insights on Controlled Droplet Formation in a Microfluidic Flow-Focusing Device
    Sontti, Somasekhara Goud
    Atta, Arnab
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (09) : 3702 - 3716
  • [4] Droplet formation via squeezing mechanism in a microfluidic flow-focusing device
    Gupta, Amit
    Matharoo, Harpreet S.
    Makkar, Devavret
    Kumar, Ranganathan
    [J]. COMPUTERS & FLUIDS, 2014, 100 : 218 - 226
  • [5] Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device
    Wu, Yining
    Fu, Taotao
    Ma, Youguang
    Li, Huai Z.
    [J]. SOFT MATTER, 2013, 9 (41) : 9792 - 9798
  • [6] Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device
    Han, Wenbo
    Chen, Xueye
    Wu, Zhongli
    Zheng, Yue
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (06)
  • [7] Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device
    Wenbo Han
    Xueye Chen
    Zhongli Wu
    Yue Zheng
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [8] Formation of monodisperse bubbles in a microfluidic flow-focusing device
    Garstecki, P
    Gitlin, I
    DiLuzio, W
    Whitesides, GM
    Kumacheva, E
    Stone, HA
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (13) : 2649 - 2651
  • [9] Electrowetting-controlled droplet generation in a microfluidic flow-focusing device
    Malloggi, Florent
    Vanapalli, Siva A.
    Gu, Hao
    van den Ende, Dirk
    Mugele, Frieder
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (46)
  • [10] Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device
    Teo, Adrian J. T.
    Li, King-Ho Holden
    Nam-Trung Nguyen
    Guo, Wei
    Heere, Nadine
    Xi, Heng-Dong
    Tsao, Chia-Wen
    Li, Weihua
    Tan, Say Hwa
    [J]. ANALYTICAL CHEMISTRY, 2017, 89 (08) : 4387 - 4391