Electrowetting-controlled droplet generation in a microfluidic flow-focusing device

被引:47
|
作者
Malloggi, Florent
Vanapalli, Siva A.
Gu, Hao
van den Ende, Dirk
Mugele, Frieder
机构
[1] Univ Twente, Fac Sci & Technol, IMPACT, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Inst, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1088/0953-8984/19/46/462101
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We studied the generation of aqueous microdrops in an oil-water flow-focusing device with integrated insulator-covered electrodes that allow for continuous tuning of the water wettability by means of electrowetting. Depending on the oil and water inlet pressures three different operating conditions were identified that shift upon applying a voltage: stable oil-water interface, drop generation, and laminar water jet formation. Full control over the drop generation is achieved within a well-defined range of inlet pressures, in quantitative agreement with a model based on the additive contributions from electrowetting and the local hydrostatic pressure at the junction. The tuning power of electrowetting is shown to increase upon device miniaturization, which makes this approach particularly attractive for flow control on the sub-micrometer scale.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Numerical Insights on Controlled Droplet Formation in a Microfluidic Flow-Focusing Device
    Sontti, Somasekhara Goud
    Atta, Arnab
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (09) : 3702 - 3716
  • [2] Droplet Generation in a Flow-Focusing Microfluidic Device with External Mechanical Vibration
    Yin, Zhaoqin
    Huang, Zemin
    Lin, Xiaohui
    Gao, Xiaoyan
    Bao, Fubing
    MICROMACHINES, 2020, 11 (08)
  • [3] Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device
    Yu, Wei
    Li, Bo
    Liu, Xiangdong
    Chen, Yongping
    CHEMICAL ENGINEERING SCIENCE, 2021, 243
  • [4] Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device
    Teo, Adrian J. T.
    Li, King-Ho Holden
    Nam-Trung Nguyen
    Guo, Wei
    Heere, Nadine
    Xi, Heng-Dong
    Tsao, Chia-Wen
    Li, Weihua
    Tan, Say Hwa
    ANALYTICAL CHEMISTRY, 2017, 89 (08) : 4387 - 4391
  • [5] Study on Flow-Focusing Microfluidic Device with External Electric Field for Droplet Generation
    Cuong Nguyen Nhu
    Hang Nguyen Thu
    Luan Le Van
    Trinh Chu Duc
    Van Thanh Dau
    Tung Thanh Bui
    ADVANCES IN ENGINEERING RESEARCH AND APPLICATION, 2019, 63 : 553 - 559
  • [6] Effect of Intersection Angle and Wettability on Droplet Generation in Microfluidic Flow-Focusing Device
    Iqbal, Saima
    Bashir, Shazia
    Ahsan, Muhammad
    Bashir, Muhammad
    Shoukat, Saad
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (04):
  • [7] SIMPLE FLOW-FOCUSING MICROFLUIDIC CHIP FOR DROPLET GENERATION
    Krivankova, Jana
    Basova, Evgenia
    Foret, Frantisek
    CECE 2015: 12TH INTERNATIONAL INTERDISCIPLINARY MEETING ON BIOANALYSIS, 2015, : 127 - 129
  • [8] Characterization of acoustic droplet formation in a microfluidic flow-focusing device
    Cheung, Yin Nee
    Qiu, Huihe
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [9] Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device
    Filatov, Nikita A.
    Evstrapov, Anatoly A.
    Bukatin, Anton S.
    MICROMACHINES, 2021, 12 (06)
  • [10] Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control
    Ibrahim, Ali M.
    Padovani, Jose I.
    Howe, Roger T.
    Anis, Yasser H.
    MICROMACHINES, 2021, 12 (06)