Insights into the unfolding pathway and identification of thermally sensitive regions of phytase from Aspergillus niger by molecular dynamics simulations

被引:10
|
作者
Kumar, Kapil [1 ]
Patel, Krunal [2 ]
Agrawal, D. C. [2 ]
Khire, J. M. [1 ]
机构
[1] NCIM, Div Biochem Sci, Pune 411008, Maharashtra, India
[2] CSIR Natl Chem Lab, Plant Tissue Culture Div, Pune 411008, Maharashtra, India
关键词
PhytaseA; Thermostability; Molecular dynamics simulations; Conformational dynamics; Structurally weak regions; PHYA PHYTASE; THERMOSTABILITY; STABILITY; ALGORITHM; NETWORKS; PROTEINS; DELETION; DESIGN; APPA2; SITE;
D O I
10.1007/s00894-015-2696-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thermal stability is of great importance in the application of commercial phytases. Phytase A (PhyA) is a monomeric protein comprising twelve alpha-helices and ten beta-sheets. Comparative molecular dynamics (MD) simulations (at 310, 350, 400, and 500 K) revealed that the thermal stability of PhyA from Aspergillus niger (A. niger) is associated with its conformational rigidity. The most thermally sensitive regions were identified as loops 8 (residues 83-106), 10 (161174), 14 (224-230), 17 (306-331), and 24 (442-444), which are present on the surface of the protein. It was observed that solvent-exposed loops denature before or show higher flexibility than buried residues. We observed that PhyA begins to unfold at loops 8 and 14, which further extends to loop 24 at the C-terminus. The intense movement of loop 8 causes the helix H2 and beta-sheet B3 to fluctuate at high temperature. The high flexibility of the H2, H10, and H12 helices at high temperature resulted in complete denaturation. The high mobility of loop 14 easily transfers to the adjacent helices H7, H8, and H9, which fluctuate and partially unfold at high temperature (500 K). It was also observed that the salt bridges Asp110-Lys149, Asp205-Lys277, Asp335-Arg136, Asp416-Arg420, and Glu387-Arg400 are important influences on the structural stability but not the thermostability, as the lengths of these salt bridges did not increase with rising temperature. The salt bridges Glu125-Arg163, Asp299-Arg136, Asp266-Arg219, Asp339-Lys278, Asp335-Arg136, and Asp424-Arg428 are all important for thermostability, as the lengths of these bridges increased dramatically with increasing temperature. Here, for the first time, we have computationally identified the thermolabile regions of PhyA, and this information could be used to engineer novel thermostable phytases. Numerous homologous phytases of fungal as well as bacterial origin are known, and these homologs show high sequence similarity. Our findings could prove useful in attempts to increase the thermostability of homologous phytases via protein engineering.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unfolding the Conformational Behavior of Peptide Dendrimers: Insights from Molecular Dynamics Simulations (vol 133, pg 5042, 2011)
    Filipe, Luis C. S.
    Machuqueiro, Miguel
    Baptista, Antonio M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 20207 - 20207
  • [32] Insights from molecular dynamics simulations into the structure and dynamics of ITPA mutants
    Houndonougbo, Yao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [33] Molecular mechanisms of ABC transporters: insights from molecular dynamics simulations
    Oliveira, A. S. F.
    Baptista, A. M.
    Soares, C. M.
    FEBS JOURNAL, 2012, 279 : 253 - 253
  • [34] Temperature-Induced Unfolding Pathway of Staphylococcal Enterotoxin B: Insights from Circular Dichroism and Molecular Dynamics Simulation
    Liu, Ji
    Zhang, Shiyu
    Zeng, Yu
    Deng, Yi
    Shipin Kexue/Food Science, 2024, 45 (18): : 55 - 76
  • [35] Insights from molecular dynamics simulations for computational protein design
    Childers, Matthew Carter
    Daggett, Valerie
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2017, 2 (01): : 9 - 33
  • [36] Interaction of antagonists with calmodulin:: Insights from molecular dynamics simulations
    Koevesi, Istvan
    Menyhard, Dora K.
    Laberge, Monique
    Fidy, Judit
    JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (11) : 3081 - 3093
  • [37] Insights into channel dysfunction from modelling and molecular dynamics simulations
    Musgaard, Maria
    Paramo, Teresa
    Domicevica, Laura
    Andersen, Ole Juul
    Biggin, Philip C.
    NEUROPHARMACOLOGY, 2018, 132 : 20 - 30
  • [38] Understanding creep in vitrimers: Insights from molecular dynamics simulations
    Singh, Gurmeet
    Varshney, Vikas
    Sundararaghavan, Veera
    POLYMER, 2024, 313
  • [39] Ice formation on kaolinite: Insights from molecular dynamics simulations
    Sosso, Gabriele C.
    Tribello, Gareth A.
    Zen, Andrea
    Pedevilla, Philipp
    Michaelides, Angelos
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (21):
  • [40] Insights into Noncovalent Binding Obtained from Molecular Dynamics Simulations
    Baz, Joerg
    Gebhardt, Julia
    Kraus, Hamzeh
    Markthaler, Daniel
    Hansen, Niels
    CHEMIE INGENIEUR TECHNIK, 2018, 90 (11) : 1864 - 1875