The Frobenius problem for numerical semigroups

被引:9
|
作者
Rosales, J. C. [2 ]
Branco, M. B. [1 ]
机构
[1] Univ Evora, Dept Matemat, P-7000 Evora, Portugal
[2] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
Numerical semigroup; Frobenius number; Genus;
D O I
10.1016/j.jnt.2011.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize those numerical semigroups containing < n(1), n(2)>. From this characterization, we give formulas for the genus and the Frobenius number of a numerical semigroup. These results can be used to give a method for computing the genus and the Frobenius number of a numerical semigroup with embedding dimension three in terms of its minimal system of generators. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2310 / 2319
页数:10
相关论文
共 50 条
  • [31] On the enumeration of the set of numerical semigroups with fixed Frobenius number
    Blanco, V.
    Rosales, J. C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (07) : 1204 - 1211
  • [32] The set of numerical semigroups of a given multiplicity and Frobenius number
    Branco, Manuel B.
    Ojeda, Ignacio
    Carlos Rosales, Jose
    PORTUGALIAE MATHEMATICA, 2021, 78 (02) : 147 - 167
  • [33] The genus, Frobenius number and pseudo-Frobenius numbers of numerical semigroups of type 2
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1081 - 1090
  • [34] The Frobenius number of a family of numerical semigroups with embedding dimension 5
    Herzinger, Kurt
    McLaughlin, Emelia
    Trimber, Julie
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (05): : 833 - 847
  • [35] Almost symmetric numerical semigroups with given Frobenius number and type
    Branco, M. B.
    Ojeda, I
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
  • [36] The Frobenius number in the set of numerical semigroups with fixed multiplicity and genus
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (04) : 1003 - 1011
  • [37] Numerical semigroups with a given set of pseudo-Frobenius numbers
    Delgado, M.
    Garcia-Sanchez, P. A.
    Robles-Perez, A. M.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 (01): : 186 - 205
  • [38] Distribution of genus among numerical semigroups with fixed Frobenius number
    Deepesh Singhal
    Semigroup Forum, 2022, 104 : 704 - 723
  • [39] The enumeration of the set of atomic numerical semigroups with fixed Frobenius number
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [40] On certain families of sparse numerical semigroups with Frobenius number even
    Tizziotti, Guilherme
    Villanueva, Juan
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 99 - 116