Two self-adaptive inertial projection algorithms for solving split variational inclusion problems

被引:1
|
作者
Zhou, Zheng [1 ]
Tan, Bing [1 ]
Li, Songxiao [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
self-adaptive stepsize; projection algorithm; inertial technique; split variational inclusion problem; STRONG-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; ITERATIVE METHOD; POINT; OPERATORS; SEQUENCE;
D O I
10.3934/math.2022276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of Hilbert spaces. For this purpose, inertial hybrid and shrinking projection algorithms are proposed under the effect of a self-adaptive stepsize which does not require information of the norms of the given operators. The strong convergence properties of the proposed algorithms are obtained under mild constraints. Finally, a numerical experiment is given to illustrate the performance of proposed methods and to compare our algorithms with an existing algorithm.
引用
收藏
页码:4960 / 4973
页数:14
相关论文
共 50 条
  • [41] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Themistocles M. Rassias
    [J]. Optimization Letters, 2020, 14 : 115 - 144
  • [42] Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
    不详
    不详
    Zhejiang, China
    [J]. Jpn J. Ind. Appl. Math., 2 (519-543):
  • [43] A SELF-ADAPTIVE INERTIAL VISCOSITY PROJECTION ALGORITHM FOR SOLVING SPLIT FEASIBILITY PROBLEM WITH MULTIPLE OUTPUT SETS
    Dang, Yazheng
    Hou, Caihua
    Liu, Yang
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (04): : 715 - 733
  • [44] On relaxed inertial projection and contraction algorithms for solving monotone inclusion problems
    Tan, Bing
    Qin, Xiaolong
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [45] Self-Adaptive Inertial Projection and Contraction Algorithm for Monotone Variational Inequality
    Gao, Xue
    Cai, Xingju
    Wang, Xueye
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2022, 39 (02)
  • [46] Two new self-adaptive algorithms for solving split common fixed point problems with multiple output sets
    Sun, Wenlong
    Jin, Yuanfeng
    Peng, Zufeng
    Liu, Qi
    [J]. OPTIMIZATION, 2023,
  • [47] Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems
    Alakoya, Timilehin Opeyemi
    Jolaoso, Lateef Olakunle
    Mewomo, Oluwatosin Temitope
    [J]. DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 208 - 224
  • [48] Reckoning solution of split common fixed point problems by using inertial self-adaptive algorithms
    Suparatulatorn, Raweerote
    Suantai, Suthep
    Phudolsitthiphat, Narawadee
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3101 - 3114
  • [49] Reckoning solution of split common fixed point problems by using inertial self-adaptive algorithms
    Raweerote Suparatulatorn
    Suthep Suantai
    Narawadee Phudolsitthiphat
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3101 - 3114
  • [50] ON INERTIAL TYPE SELF-ADAPTIVE ITERATIVE ALGORITHMS FOR SOLVING PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
    Ogbuisi, F. U.
    Iyiola, O. S.
    Ngnotchouye, J. M. T.
    Shumba, T. M. M.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,