Application and evaluation of machine-learning model for fire accelerant classification from GC-MS data of fire residue

被引:2
|
作者
Park, Chihyun [1 ]
Park, Wooyong [1 ]
Jeon, Sookyung [1 ]
Lee, Sumin [1 ]
Lee, Joon-Bae [2 ]
机构
[1] Natl Forens Serv, Daejeon Dist Off, Daejeon 34054, South Korea
[2] Natl Forens Serv, Daegu Dist Off, Chilgok 39872, South Korea
来源
ANALYTICAL SCIENCE AND TECHNOLOGY | 2021年 / 34卷 / 05期
关键词
GC-MS; machine learning; random forest; support vector machine; IDENTIFICATION;
D O I
10.5806/AST.2021.34.5.231
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 50 条
  • [21] Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns
    Kim, HyunKyoung
    Kwak, Hyo-Gyoung
    Hwang, Ju-Young
    [J]. COMPUTERS AND CONCRETE, 2023, 32 (06): : 625 - 637
  • [22] MOISTURE CONTENT CLASSIFICATION OF SOIL AND STALK RESIDUE SAMPLES FROM SPECTRAL DATA USING MACHINE LEARNING
    Hamidisepehr, A.
    Sama, M. P.
    [J]. TRANSACTIONS OF THE ASABE, 2019, 62 (01) : 1 - 8
  • [23] Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest
    De la Rosa, J. M.
    Gonzalez-Perez, J. A.
    Gonzalez-Vazquez, R.
    Knicker, H.
    Lopez-Capel, E.
    Manning, D. A. C.
    Gonzalez-Vila, F. J.
    [J]. CATENA, 2008, 74 (03) : 296 - 303
  • [24] Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data
    Chunliang Feng
    Frank Krueger
    Ruolei Gu
    Wenbo Luo
    [J]. Quantitative Biology., 2022, 10 (04) - 402
  • [25] GC-MS characterisation of novel artichoke (Cynara scolymus) pectic-oligosaccharides mixtures by the application of machine learning algorithms and competitive fragmentation modelling
    Sabater, Carlos
    Olano, Agustin
    Corzo, Nieves
    Montilla, Antonia
    [J]. CARBOHYDRATE POLYMERS, 2019, 205 : 513 - 523
  • [26] Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data
    Feng, Chunliang
    Krueger, Frank
    Gu, Ruolei
    Luo, Wenbo
    [J]. QUANTITATIVE BIOLOGY, 2022, 10 (04) : 390 - 402
  • [27] Machine Learning Estimation of Fire Arrival Time from Level-2 Active Fires Satellite Data
    Farguell, Angel
    Mandel, Jan
    Haley, James
    Mallia, Derek V.
    Kochanski, Adam
    Hilburn, Kyle
    [J]. REMOTE SENSING, 2021, 13 (11)
  • [28] A New Machine-Learning Prediction Model for Slope Deformation of an Open-Pit Mine: An Evaluation of Field Data
    Du, Sunwen
    Feng, Guorui
    Wang, Jianmin
    Feng, Shizhe
    Malekian, Reza
    Li, Zhixiong
    [J]. ENERGIES, 2019, 12 (07)
  • [29] Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data
    L. R. Brewster
    J. J. Dale
    T. L. Guttridge
    S. H. Gruber
    A. C. Hansell
    M. Elliott
    I. G. Cowx
    N. M. Whitney
    A. C. Gleiss
    [J]. Marine Biology, 2018, 165
  • [30] Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data
    Brewster, L. R.
    Dale, J. J.
    Guttridge, T. L.
    Gruber, S. H.
    Hansell, A. C.
    Elliott, M.
    Cowx, I. G.
    Whitney, N. M.
    Gleiss, A. C.
    [J]. MARINE BIOLOGY, 2018, 165 (04)