On simultaneous planar graph embeddings

被引:0
|
作者
Brass, P [1 ]
Cenek, E
Duncan, CA
Efrat, A
Erten, C
Ismailescu, D
Kobourov, SG
Lubiw, A
Mitchell, JSB
机构
[1] CUNY, Dept Comp Sci, New York, NY 10021 USA
[2] Univ Waterloo, Dept Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Miami, Dept Comp Sci, Coral Gables, FL 33124 USA
[4] Univ Arizona, Dept Comp Sci, Tucson, AZ 85721 USA
[5] Hofstra Univ, Dept Math, Hempstead, NY 11550 USA
[6] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of simultaneous embedding of planar graphs. There are two variants of this problem, one in which the mapping between the vertices of the two graphs is given and another in which the mapping is not, given. In particular, given a mapping, we show how to embed two paths on an n x n grid, and two caterpillar graphs on a 3n x 3n grid. We show that it is not always possible to simultaneously embed three paths. If the mapping is not given, we show that any number of outerplanar graphs can be embedded simultaneously on an 0(n) x 0(n) grid, and an outerplanar and general planar graph can be embedded simultaneously on an O(n(2)) x O(n(2)) grid.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [31] Geodesic Embeddings and Planar Graphs
    Stefan Felsner
    Order, 2003, 20 : 135 - 150
  • [32] Fast and Compact Planar Embeddings
    Ferres, Leo
    Fuentes, Jose
    Gagie, Travis
    He, Meng
    Navarro, Gonzalo
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 385 - 396
  • [33] Dynamic Compact Planar Embeddings
    Gagie, Travis
    He, Meng
    St Denis, Michael
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2023, 2023, 14240 : 233 - 245
  • [34] Chordal embeddings of planar graphs
    Bouchitté, V
    Mazoit, F
    Todinca, I
    DISCRETE MATHEMATICS, 2003, 273 (1-3) : 85 - 102
  • [35] Fundamental cycles and graph embeddings
    Han Ren
    HongTao Zhao
    HaoLing Li
    Science in China Series A: Mathematics, 2009, 52 : 1920 - 1926
  • [36] Manifold structure in graph embeddings
    Rubin-Delanchy, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [37] Graph embeddings and Schrodinger equation
    deVerdiere, YC
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (8-10) : 305 - 305
  • [38] Ultrahyperbolic Knowledge Graph Embeddings
    Xiong, Bo
    Zhu, Shichao
    Nayyeri, Mojtaba
    Xu, Chengjin
    Pan, Shirui
    Zhou, Chuan
    Staab, Steffen
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2130 - 2139
  • [39] Fundamental cycles and graph embeddings
    Ren Han
    Zhao HongTao
    Li HaoLing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (09): : 1920 - 1926
  • [40] Bias in Knowledge Graph Embeddings
    Bourli, Styliani
    Pitoura, Evaggelia
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2020, : 6 - 10