Some Generalizations of the Shadow Problem in the Lobachevsky Space

被引:1
|
作者
Kostin, A. V. [1 ]
机构
[1] Kazan Fed Univ, Elabuga Inst, Yelabuga, Russia
关键词
D O I
10.1007/s11253-021-01908-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [31] SOME GENERALIZATIONS OF A BOUNDARY VALUE PROBLEM WITH OBLIQUE DERIVATIVE
    ROZENTAL, AL
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (02): : 329 - &
  • [32] Some generalizations for the synthesis problem of the waveguide antenna array
    Andrivchuk, MI
    Zamorska, OF
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2004, : 487 - 489
  • [33] QUANTUM-MECHANICAL KEPLER-PROBLEM IN THE 3-DIMENSIONAL LOBACHEVSKY SPACE
    BOGUSH, AA
    KUROCHKIN, YA
    OTCHIK, VS
    DOKLADY AKADEMII NAUK BELARUSI, 1980, 24 (01): : 19 - 22
  • [34] Eigenfunction expansions in the imaginary Lobachevsky space
    Kurochkin, Yu. A.
    Otchik, V. S.
    Petrosyan, D. R.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2017, 80 (04) : 730 - 738
  • [35] Eigenfunction expansions in the imaginary Lobachevsky space
    Yu. A. Kurochkin
    V. S. Otchik
    D. R. Petrosyan
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2017, 80 : 730 - 738
  • [36] GEODESICS IN FRIEDMAN-LOBACHEVSKY SPACE
    FIKHTENGOLTS, IG
    SOVIET PHYSICS JETP-USSR, 1959, 9 (04): : 937 - 937
  • [37] Nonrelativistic Particle with Spin in the Lobachevsky Space
    Kurochkin, Yu A.
    Otchik, V. S.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (02): : 104 - 115
  • [38] The tunnel-effect in the Lobachevsky space
    Kurochkin, Yu.
    Shoukavy, Dz.
    ACTA PHYSICA POLONICA B, 2006, 37 (09): : 2423 - 2431
  • [39] On the enumeration of Archimedean polyhedra in the Lobachevsky space
    V. S. Makarov
    P. V. Makarov
    Proceedings of the Steklov Institute of Mathematics, 2011, 275 : 90 - 117
  • [40] On the Enumeration of Archimedean Polyhedra in the Lobachevsky Space
    Makarov, V. S.
    Makarov, P. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 275 (01) : 90 - 117