Some Generalizations of the Shadow Problem in the Lobachevsky Space

被引:1
|
作者
Kostin, A. V. [1 ]
机构
[1] Kazan Fed Univ, Elabuga Inst, Yelabuga, Russia
关键词
D O I
10.1007/s11253-021-01908-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [1] Some Generalizations of the Shadow Problem in the Lobachevsky Space
    A.V. Kostin
    Ukrainian Mathematical Journal, 2021, 73 : 67 - 75
  • [2] Generalizations of the Shadow Problem
    Yu. B. Zelins’kyi
    M. V. Stefanchuk
    Ukrainian Mathematical Journal, 2016, 68 : 862 - 867
  • [3] Generalizations of the Shadow Problem
    Zelins'kyi, Yu B.
    Stefanchuk, M. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (06) : 862 - 867
  • [4] On generalizations of the shadow independent set problem
    Porschen, Stefan
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1473 - 1485
  • [5] THE RELATIVISTIC KEPLER-PROBLEM IN THE LOBACHEVSKY SPACE
    CHERNIKOV, NA
    ACTA PHYSICA POLONICA B, 1993, 24 (05): : 927 - 950
  • [6] Some quantum mechanical problems in Lobachevsky space
    Shchepetilov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1996, 109 (03) : 1556 - 1564
  • [7] On some integrable systems in the extended lobachevsky space
    Yu. A. Kurochkin
    V. S. Otchik
    E. M. Ovsiyuk
    Dz. V. Shoukavy
    Physics of Atomic Nuclei, 2011, 74 : 944 - 948
  • [8] On Some Integrable Systems in the Extended Lobachevsky Space
    Kurochkin, Yu A.
    Otchik, V. S.
    Ovsiyuk, E. M.
    Shoukavy, Dz V.
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 944 - 948
  • [9] THE KEPLER-PROBLEM IN THE LOBACHEVSKY SPACE AND ITS SOLUTION
    CHERNIKOV, NA
    ACTA PHYSICA POLONICA B, 1992, 23 (02): : 115 - 122
  • [10] On generalizations of Ptolemy's theorem on the Lobachevsky plane
    Kostin, Andrey Viktorovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 404 - 414