A Fusion Approach for Robust Visual Object Tracking in Crowd Scenes

被引:0
|
作者
Oh, Tae-Hyun [1 ]
Joo, Kyungdon [1 ]
Kim, Junsik [1 ]
Park, Jaesik [1 ]
Kweon, In So [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Daejeon, South Korea
关键词
Visual object tracking; single target tracking; tracking by detection; surveillance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The visual object tracking problem in a crowd scene has many challenges such as occlusion, similar objects and complex motion. This study presents a system of which modules are composed of feature tracking and detection methods. The proposed system fuses the two modules by converting the incomparable responses into a same metric domain. According to an explicit combining rule, the results of the modules are combined and learned only when the two modules produce consistent results. The performance of the proposed algorithm was quantitatively validated and was compared with other modern visual trackers on i-Lids dataset.
引用
收藏
页码:558 / 560
页数:3
相关论文
共 50 条
  • [21] ROBUST APPROACH TO TRACKING HUMAN MOTION IN REAL SCENES
    ASSERETO, M
    FIGARI, G
    TESEI, A
    ELECTRONICS LETTERS, 1994, 30 (24) : 2013 - 2014
  • [22] An Empirical Analysis of Visual Features for Multiple Object Tracking in Urban Scenes
    Miah, Mehdi
    Pepin, Justine
    Saunier, Nicolas
    Bilodeau, Guillaume-Alexandre
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5595 - 5602
  • [23] Spatial feature embedding for robust visual object tracking
    Liu, Kang
    Liu, Long
    Yang, Shangqi
    Fu, Zhihao
    IET COMPUTER VISION, 2024, 18 (04) : 540 - 556
  • [24] Robust ambiguous target handling for visual object tracking
    Choeychuen, Kairoek
    Kumhom, Pinit
    Chamnongthai, Kosin
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2010, 64 (10) : 960 - 970
  • [25] Learning object intrinsic structure for robust visual tracking
    Wang, Q
    Xu, GY
    Ai, HZ
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2003, : 227 - 233
  • [26] Robust Estimation of Similarity Transformation for Visual Object Tracking
    Li, Yang
    Zhu, Jianke
    Hoi, Steven C. H.
    Song, Wenjie
    Wang, Zhefeng
    Liu, Hantang
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8666 - 8673
  • [27] Fusion of Spatial and Visual Information for Object Tracking on iPhone
    Heidari, Amin
    Alaei-Novin, Inaz
    Aarabi, Parham
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 630 - 637
  • [28] Learning Spatial Fusion and Matching for Visual Object Tracking
    Xiao, Wei
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 352 - 367
  • [29] MATI: Multimodal Adaptive Tracking Integrator for Robust Visual Object Tracking
    Li, Kai
    Cai, Lihua
    He, Guangjian
    Gong, Xun
    SENSORS, 2024, 24 (15)
  • [30] Visual Perception based Adaptive Feature Fusion for Visual Object Tracking
    Krieger, Evan
    Asari, Vijayan K.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1345 - 1350