Subdivisions of four blocks cycles in digraphs with large chromatic number

被引:0
|
作者
Al-Mniny, Darine [1 ,2 ]
机构
[1] Lebanese Univ, Fac Sci 1, Dept Math, KALMA Lab, Hadath, Lebanon
[2] Claude Bernard Univ Lyon 1, Camille Jordan Inst, Dept Math, Villeurbanne, France
关键词
Chromatic number; Four blocks cycle; Subdivision; GRAPHS; LENGTHS;
D O I
10.1016/j.dam.2021.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cycle with four blocks C(k(1), k(2), k(3), k(4)) is an oriented cycle formed of four blocks of lengths k(1), k(2), k(3) and k(4) respectively. We conjecture that for every positive integers k(1), k(2), k(3), k(4), there is an integer g(k(1), k(2), k(3), k(4)) such that every strongly connected digraph with chromatic number greater than g(k(1), k(2), k(3), k(4)) contains a subdivision of C(k(1), k(2), k(3), k(4)). As evidence, we prove this conjecture for k(2) = k(3) = k(4) = 1. (C) 2021 Published by Elsevier B.V.
引用
下载
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [31] A SHORT CONSTRUCTION OF HIGHLY CHROMATIC DIGRAPHS WITHOUT SHORT CYCLES
    Severino, Michael
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2014, 9 (02) : 91 - 94
  • [32] 1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio
    Zdenĕk Dvořák
    Patrice Ossona de Mendez
    Hehui Wu
    Combinatorica, 2020, 40 : 759 - 774
  • [33] Almost symmetric cycles in large digraphs
    Adamus, Lech
    Wojda, A. Pawel
    GRAPHS AND COMBINATORICS, 2006, 22 (04) : 443 - 452
  • [34] 1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio
    Dvorak, Zdenek
    de Mendez, Patrice Ossona
    Wu, Hehui
    COMBINATORICA, 2020, 40 (06) : 759 - 774
  • [35] ORIENTATIONS OF HAMILTONIAN CYCLES IN LARGE DIGRAPHS
    WOJDA, AP
    JOURNAL OF GRAPH THEORY, 1986, 10 (02) : 211 - 218
  • [36] COUNTING THE NUMBER OF HAMILTON CYCLES IN RANDOM DIGRAPHS
    FRIEZE, A
    SUEN, S
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 235 - 241
  • [37] Oriented Cycles in Digraphs of Large Outdegree
    Lior Gishboliner
    Raphael Steiner
    Tibor Szabó
    Combinatorica, 2022, 42 : 1145 - 1187
  • [38] Oriented Cycles in Digraphs of Large Outdegree
    Gishboliner, Lior
    Steiner, Raphael
    Szabo, Tibor
    COMBINATORICA, 2022, 42 (SUPPL 1) : 1145 - 1187
  • [39] Almost Symmetric Cycles in Large Digraphs
    Lech Adamus
    A. Paweł Wojda
    Graphs and Combinatorics, 2006, 22 : 443 - 452
  • [40] THE MEAN CHROMATIC NUMBER OF PATHS AND CYCLES
    ANTHONY, M
    BIGGS, N
    DISCRETE MATHEMATICS, 1993, 120 (1-3) : 227 - 231