New mixed finite element method on polygonal and polyhedral meshes

被引:0
|
作者
Kuznetsov, Y
Repin, S
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
关键词
D O I
10.1163/156939803322380846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of mixed and hybrid finite element methods for diffusion-type and other elliptic differential equations, it is necessary to apply numerical schemes with variables given as values of normal fluxes on the edges (faces) of the elementary cells and values of the scalar-valued function in each cell. In this paper, we propose a general method of constructing finite element approximations on polygonal and polyhedral meshes, whose cells are convex and nonconvex polygonal domains in R-2 and polyhedrons in R-3. We present a natural way of constructing cell prolongation operators, which makes it possible to easily compute the coefficients of the respective mass matrices. Also, the proposed prolongations satisfy the important requirement that the image of the divergence operator on the extended fields belongs to the set of piecewise constant functions. The latter fact provides direct justification of the well-posedness of the arising discrete problems.
引用
收藏
页码:261 / 278
页数:18
相关论文
共 50 条
  • [31] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Yang Li
    Minfu Feng
    Yan Luo
    [J]. Advances in Computational Mathematics, 2022, 48
  • [32] A NEW FINITE ELEMENT SPACE FOR EXPANDED MIXED FINITE ELEMENT METHOD
    Chen, Jing
    Zhou, Zhaojie
    Chen, Huanzhen
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05) : 817 - 841
  • [33] A new element-by-element method for trajectory calculations with tetrahedral finite element meshes
    Heniche, Mourad
    Tanguy, Philippe A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (09) : 1290 - 1317
  • [34] On the finite element method on quadrilateral meshes
    Boffi, Daniele
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) : 1271 - 1282
  • [35] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Liu, Wanxiang
    Chen, Yanping
    Gu, Qiling
    Huang, Yunqing
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (04) : 1731 - 1761
  • [36] Virtual element method for semilinear hyperbolic problems on polygonal meshes
    Adak, Dibyendu
    Natarajan, E.
    Kumar, Sarvesh
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 971 - 991
  • [37] Virtual element method for semilinear elliptic problems on polygonal meshes
    Adak, D.
    Natarajan, S.
    Natarajan, E.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 175 - 187
  • [38] The fundamental solution element method based on irregular polygonal meshes
    Liu, Hua-Yu
    Gao, Xiao-Wei
    Lv, Jun
    [J]. Computers and Mathematics with Applications, 2024, 174 : 481 - 494
  • [39] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Wanxiang Liu
    Yanping Chen
    Qiling Gu
    Yunqing Huang
    [J]. Numerical Algorithms, 2023, 94 : 1731 - 1761
  • [40] Untangling polygonal and polyhedral meshes via mesh optimization
    Jibum Kim
    Jaeyong Chung
    [J]. Engineering with Computers, 2015, 31 : 617 - 629