Hashing to elliptic curves of j-invariant 1728

被引:2
|
作者
Koshelev, Dmitrii [1 ,2 ,3 ]
机构
[1] Versailles St Quentin Yvelines Univ, Versailles Lab Math, Versailles, France
[2] Inst Informat Transmiss Problems, Algebra & Number Theory Lab, Moscow, Russia
[3] Moscow Inst Phys & Technol, Dept Discrete Math, Dolgoprudnyi, Russia
关键词
Finite fields; Pairing-based cryptography; Elliptic curves of j -invariant 1728; Kummer surfaces; Rational curves; Weil restriction; Isogenies; POINTS;
D O I
10.1007/s12095-021-00478-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article generalizes the simplified Shallue-van de Woestijne-Ulas (SWU) method of a deterministic finite field mapping h : F-q -> E-a(F-q) to the case of any elliptic F-q-curve E-a : y(2) = x(3) - ax of j-invariant 1728. In comparison with the (classical) SWU method the simplified SWU method allows to avoid one quadratic residuosity test in the field Fq, which is a quite painful operation in cryptography with regard to timing attacks. More precisely, in order to derive h we obtain a rational Fq -curve C (and its explicit quite simple proper F-q -parametrization) on the Kummer surface K' associated with the direct product E-a x E'(a), where E'(a) is the quadratic F-q-twist of E-a. Our approach of finding C is based on the fact that every curve E-a has a vertical F-q2-isogeny of degree 2.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [41] J-INVARIANT OF LINEAR ALGEBRAIC GROUPS
    Petrov, Viktor
    Semenov, Nikita
    Zainoulline, Kirill
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2008, 41 (06): : 1023 - 1053
  • [42] The J-invariant, Tits algebras and triality
    Queguiner-Mathieu, A.
    Semenov, N.
    Zainoulline, K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (12) : 2614 - 2628
  • [43] On Hermitian surfaces with J-invariant Ricci tensor
    Muškarov O.
    Journal of Geometry, 2001, 72 (1) : 151 - 156
  • [44] Verified Indifferentiable Hashing into Elliptic Curves
    Barthe, Gilles
    Gregoire, Benjamin
    Heraud, Sylvain
    Olmedo, Federico
    Zanella Beguelin, Santiago
    PRINCIPLES OF SECURITY AND TRUST, POST 2012, 2012, 7215 : 209 - 228
  • [45] Verified indifferentiable hashing into elliptic curves
    Barthe, Gilles
    Gregoire, Benjamin
    Heraud, Sylvain
    Olmedo, Federico
    Zanella-Beguelin, Santiago
    JOURNAL OF COMPUTER SECURITY, 2013, 21 (06) : 881 - 917
  • [46] A universal formula for the j-invariant of the canonical lifting
    Erdogan, Altan
    JOURNAL OF NUMBER THEORY, 2015, 150 : 26 - 40
  • [47] The J-invariant, exceptional surfaces and notions of periodicity
    Calta, Kariane
    Smillie, John
    PARTIALLY HYPERBOLIC DYNAMICS, LAMINATIONS, AND TEICHMULLER FLOW, 2007, 51 : 113 - +
  • [48] Lifting the j-invariant: Questions of Mazur and Tate
    Finotti, Luis R. A.
    JOURNAL OF NUMBER THEORY, 2010, 130 (03) : 620 - 638
  • [49] The J-invariant over splitting fields of Tits algebras
    Zhykhovich, Maksim
    COMPOSITIO MATHEMATICA, 2024, 160 (09)
  • [50] Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
    Brier, Eric
    Coron, Jean-Sebastien
    Icart, Thomas
    Madore, David
    Randriam, Hugues
    Tibouchi, Mehdi
    ADVANCES IN CRYPTOLOGY - CRYPTO 2010, 2010, 6223 : 237 - +