Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells

被引:242
|
作者
Titushkin, Igor [1 ]
Cho, Michael [1 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
关键词
D O I
10.1529/biophysj.107.107797
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Recognition of the growing role of human mesenchymal stem cells (hMSC) in tissue engineering and regenerative medicine requires a thorough understanding of intracellular biochemical and biophysical processes that may direct the cell's commitment to a particular lineage. In this study, we characterized the distinct biomechanical properties of hMSCs, including the average Young's modulus determined by atomic force microscopy (3.2 +/- 1.4 kPa for hMSC vs. 1.7 +/- 1.0 kPa for fully differentiated osteoblasts), and the average membrane tether length measured with laser optical tweezers (10.6 +/- 1.1 mm for stem cells, and 4.0 +/- 1.1 mm for osteoblasts). These differences in cell elasticity and membrane mechanics result primarily from differential actin cytoskeleton organization in these two cell types, whereas microtubules did not appear to affect the cellular mechanics. The membrane-cytoskeleton linker proteins may contribute to a stronger interaction of the plasma membrane with F-actins and shorter membrane tether length in osteoblasts than in stem cells. Actin depolymerization or ATP depletion caused a two- to threefold increase in the membrane tether length in osteoblasts, but had essentially no effect on the stem-cell membrane tethers. Actin remodeling in the course of a 10-day osteogenic differentiation of hMSC mediates the temporally correlated dynamical changes in cell elasticity and membrane mechanics. For example, after a 10-day culture in osteogenic medium, hMSC mechanical characteristics were comparable to those of mature bone cells. Based on quantitative characterization of the actin cytoskeleton remodeling during osteodifferentiation, we postulate that the actin cytoskeleton plays a pivotal role in determining the hMSC mechanical properties and modulation of cellular mechanics at the early stage of stem-cell osteodifferentiation.
引用
收藏
页码:3693 / 3702
页数:10
相关论文
共 50 条
  • [21] HOX gene analysis in the osteogenic differentiation of human mesenchymal stem cells
    Chae, Song Wha
    Jee, Bo Keun
    Lee, Joo Yong
    Han, Chang Whan
    Jeon, Yang-Whan
    Lim, Young
    Lee, Kweon-Haeng
    Rha, Hyoung Kyun
    Chae, Gue-Tae
    [J]. GENETICS AND MOLECULAR BIOLOGY, 2008, 31 (04) : 815 - 823
  • [22] Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells
    Chiara Vidoni
    Alessandra Ferraresi
    Eleonora Secomandi
    Letizia Vallino
    Chiara Gardin
    Barbara Zavan
    Carmen Mortellaro
    Ciro Isidoro
    [J]. Cell Communication and Signaling, 17
  • [23] Nitric oxide production during the osteogenic differentiation of human periodontal ligament mesenchymal stem cells
    Orciani, Monia
    Trubiani, Oriana
    Vignini, Arianna
    Mattioli-Belmonte, Monica
    Di Primio, R.
    Salvolini, Eleonora
    [J]. ACTA HISTOCHEMICA, 2009, 111 (01) : 15 - 24
  • [24] ADHESION AND OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS ON TITANIUM NANOPORES
    Lavenus, Sandrine
    Berreur, Martine
    Trichet, Valerie
    Pilet, Paul
    Louarn, Guy
    Layrolle, Pierre
    [J]. EUROPEAN CELLS & MATERIALS, 2011, 22 : 84 - 96
  • [25] Investigating the role of collagen in osteogenic differentiation of human mesenchymal stem cells
    Fernandes, H.
    Leusink, A.
    Dechering, K.
    van Someren, E. P.
    van Blitterswijk, C. A.
    de Boer, J.
    [J]. TISSUE ENGINEERING PART A, 2008, 14 (05) : 871 - 872
  • [26] Reduction in Gsα induces osteogenic differentiation in human mesenchymal stem cells
    Lietman, SA
    Ding, CL
    Cooke, DW
    Levine, MA
    [J]. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2005, (434) : 231 - 238
  • [27] Osteogenic differentiation of human marrow-derived mesenchymal stem cells
    Marie, Pierre J.
    Fromigue, Olivia
    [J]. REGENERATIVE MEDICINE, 2006, 1 (04) : 539 - 548
  • [28] Induction of Osteogenic Differentiation in Human Mesenchymal Stem Cells by Crosstalk with Osteoblasts
    Glueck, Martina
    Gardner, Oliver
    Czekanska, Ewa
    Alini, Mauro
    Stoddart, Martin J.
    Salzmann, Gian M.
    Schmal, Hagen
    [J]. BIORESEARCH OPEN ACCESS, 2015, 4 (01): : 121 - 130
  • [29] Biomimetic Nanocomposites to Control Osteogenic Differentiation of Human Mesenchymal Stem Cells
    Liao, Susan
    Nguyen, Luong T. H.
    Ngiam, Michelle
    Wang, Charlene
    Cheng, Ziyuan
    Chan, Casey K.
    Ramakrishna, Seeram
    [J]. ADVANCED HEALTHCARE MATERIALS, 2014, 3 (05) : 737 - 751
  • [30] Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices
    Westhrin, Marita
    Xie, Minli
    Olderoy, Magnus O.
    Sikorski, Pawel
    Strand, Berit L.
    Standal, Therese
    [J]. PLOS ONE, 2015, 10 (03):