DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING

被引:9
|
作者
Iovan, Corina [1 ]
Kulbicki, Michel [1 ]
Mermet, Eric [2 ]
机构
[1] IRD, Lab Excellence CORAIL, UMR Entropie, BPA5, Noumea 98848, New Caledonia
[2] EHESS, CAMS, UMR 8557, 54 Bd Raspail, F-75006 Paris, France
关键词
CNN; mangroves; Sentinel-2; World-View2; remote sensing; FORESTS; CLASSIFICATION;
D O I
10.1109/IGARSS39084.2020.9323802
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Updated information on the spatial distribution of mangrove forests is of high importance for management plans. Yet, access to mangrove distribution maps is limited, even-though remote sensing data is currently freely available and deep learning algorithms score high performances in automatic classification tasks. The methodologies developed in this paper are based on a deep convolutional neural network and have been tested on WorldView 2 and Sentinel-2 images. The obtained results are highly satisfactory and open perspectives for automatically mapping mangrove distribution over large areas.
引用
收藏
页码:1969 / 1972
页数:4
相关论文
共 50 条
  • [41] Deep convolutional neural network-based pixel-wise landslide inventory mapping
    Su, Zhaoyu
    Chow, Jun Kang
    Tan, Pin Siang
    Wu, Jimmy
    Ho, Ying Kit
    Wang, Yu-Hsing
    [J]. LANDSLIDES, 2021, 18 (04) : 1421 - 1443
  • [42] Mapping dead forest cover using a deep convolutional neural network and digital aerial photography
    Sylvain, Jean -Daniel
    Drolet, Guillaume
    Brown, Nicolas
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 156 : 14 - 26
  • [43] Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping
    Tong Li
    Renguang Zuo
    Yihui Xiong
    Yong Peng
    [J]. Natural Resources Research, 2021, 30 : 27 - 38
  • [44] INVERSE DESIGN OF AIRFOILS USING CONVOLUTIONAL NEURAL NETWORK AND DEEP NEURAL NETWORK
    Kumar, Amit
    Vadlamani, Nagabhushana Rao
    [J]. PROCEEDINGS OF ASME 2021 GAS TURBINE INDIA CONFERENCE (GTINDIA2021), 2021,
  • [45] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [46] An Architecture Design Method of Deep Convolutional Neural Network
    Suzuki, Satoshi
    Shouno, Hayaru
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 538 - 546
  • [47] DCFNet: Deep Neural Network with Decomposed Convolutional Filters
    Qiu, Qiang
    Cheng, Xiuyuan
    Calderbank, Robert
    Sapiro, Guillermo
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [48] SELECTION OF PERSISTENT SCATTERERS WITH A DEEP CONVOLUTIONAL NEURAL NETWORK
    Yang, Tianxiang
    Yu, Hanwen
    Wang, Yong
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2912 - 2915
  • [49] Slim MobileNet: An Enhanced Deep Convolutional Neural Network
    Bouguezzi, Safa
    Faiedh, Hassene
    Souani, Chokri
    [J]. 2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 12 - 16
  • [50] Deep Convolutional Neural Network for Inverse Problems in Imaging
    Jin, Kyong Hwan
    McCann, Michael T.
    Froustey, Emmanuel
    Unser, Michael
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4509 - 4522