Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization

被引:99
|
作者
Sotiras, Aristeidis [1 ]
Resnick, Susan M. [2 ]
Davatzikos, Christos [1 ]
机构
[1] Univ Penn, Ctr Biomed Image Comp & Analyt, Sect Biomed Image Anal, Philadelphia, PA 19104 USA
[2] NIA, Lab Behav Neurosci, Baltimore, MD 21224 USA
基金
美国国家卫生研究院;
关键词
Data analysis; Structural covariance; Non-Negative Matrix Factorization; Principal Component Analysis; Independent Component Analysis; Diffusion Tensor Imaging; Fractional anisotropy; Structural Magnetic Resonance Imaging; Gray matter; RAVENS; INDEPENDENT COMPONENT ANALYSIS; VOXEL-BASED MORPHOMETRY; FUNCTIONAL CONNECTIVITY; HUMAN BRAIN; STATISTICAL-ANALYSIS; GROWTH-PATTERNS; WHITE-MATTER; MRI; MATURATION; FMRI;
D O I
10.1016/j.neuroimage.2014.11.045
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common-mechanisms such as genetics and pathologies. NNMF offers a directly data-drivenway of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [22] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [23] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [24] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [25] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [26] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [27] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [28] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [29] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [30] Discovering phone patterns in spoken utterances by non-negative matrix factorization
    Stouten, Veronique
    Demuynck, Kris
    Van hamme, Hugo
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 131 - 134