On ID*-superderivations of Lie superalgebras

被引:0
|
作者
Liu, Wende [1 ]
Cai, Mengmeng [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou, Hainan, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 08期
基金
中国国家自然科学基金;
关键词
ID*-superderivation; nilpotent Lie superalgebras of class 2; model filiform Lie superalgebras;
D O I
10.1080/03081087.2020.1765955
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie superalgebra over a field of characteristic different from 2, 3 and write ID*(L) for the Lie superalgebra consisting of superderivations mapping L to L-2 and the central elements to zero. In this paper we first give an upper bound for the superdimension of ID*(L) by means of linear vector space decompositions. Then we characterize the ID*-superderivation superalgebras for the nilpotent Lie superalgebras of class 2 and the model filiform Lie superalgebras by methods of block matrices.
引用
收藏
页码:1513 / 1525
页数:13
相关论文
共 50 条
  • [41] Intuitionistic Fuzzy Lie Sub-superalgebras and Ideals of Lie Superalgebras
    Chen, Wenjuan
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 841 - 845
  • [42] Lie superhomomorphisms on Lie ideals in superalgebras
    Yu Wang
    [J]. Israel Journal of Mathematics, 2013, 196 : 461 - 482
  • [43] On degenerations of Lie superalgebras
    Alejandra Alvarez, Maria
    Hernandez, Isabel
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01): : 29 - 44
  • [44] Vague Lie Superalgebras
    Akram, M.
    Alshehri, N. O.
    Abujabal, H. A.
    [J]. ARS COMBINATORIA, 2013, 109 : 327 - 344
  • [45] Cohomology of Lie Superalgebras
    Alejandra Alvarez, Maria
    Rosales-Gomez, Javier
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [46] Thermal Lie superalgebras
    Trindade, Marco A. S.
    Pinto, Eric
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (30):
  • [47] On (σ, τ)-derivations of Lie superalgebras
    Fan, Yusi
    Chen, Liangyun
    [J]. FILOMAT, 2023, 37 (01) : 179 - 192
  • [48] ON (α, β, γ)-DERIVATIONS OF LIE SUPERALGEBRAS
    Zheng, Keli
    Zhang, Yongzheng
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
  • [49] On split Lie superalgebras
    Calderon Martin, Antonio J.
    Sanchez Delgado, Jose M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)
  • [50] A note on Lie superalgebras
    Loide, Rein-Karl
    Suurvarik, Pavel
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (04) : 332 - 337