Analysis of the charge transfer and separation in electrically doped organic semiconductors by electron spin resonance spectroscopy

被引:6
|
作者
Gasonoo, Akpeko [1 ]
Kim, Jae-Min [2 ]
Yoo, Seung-Jun [2 ]
Cho, Yong-Joon [3 ]
Lee, Jeong-Hwan [3 ]
Choi, Yoonseuk [1 ]
Kim, Jang-Joo [2 ]
Lee, Jae-Hyun [4 ]
机构
[1] Hanbat Natl Univ, Dept Elect & Control Engn, Daejeon 34158, South Korea
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Res Inst Adv Mat, Seoul 08826, South Korea
[3] Inha Univ, Dept Mat Sci & Engn, Incheon 22212, South Korea
[4] Hanbat Natl Univ, Dept Creat Convergence, Daejeon 34158, South Korea
基金
新加坡国家研究基金会;
关键词
Organic semiconductors; p-dopant; Charge transfer; Charge separation; Charge generation efficiency; Electron spin resonance spectroscopy; DOPING EFFICIENCY; THIN-FILMS; TRANSPORT; DOPANTS; ORIGIN; OLEDS; MOO3;
D O I
10.1016/j.orgel.2019.01.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigated the charge generation mechanism of electrically doped organic semiconductors (OSs) by electron spin resonance (ESR) analysis. ESR spectroscopy was used to successfully evaluate the radical density of p-doped OSs to estimate the charge transfer efficiency (CTE) of various doped systems. The results showed that the GTE is efficient close to 100% if the dopant molecules are homogenously dispersed and the energy difference (Delta E) between the highest occupied molecular orbital (HOMO) level of the host molecule and lowest unoccupied molecular orbital (LUMO) level of the p-dopant is large. The charge separation efficiency to form free carriers from the radicals is rather low (less than 12% in this study) and is a dominant factor controlling the charge generation efficiency (CGE). An organic dopant molybdenum tris[1,2-bis(trifluoromethyeethane-1,2-dithiolene] turns out to be an efficient dopant with the CGE of 9.7% due to high CTE originating from homogenous dispersion of the organic p-dopants and low LUMO level, i.e., large Delta E.
引用
收藏
页码:242 / 246
页数:5
相关论文
共 50 条
  • [21] LANCASTER,G - ELECTRON SPIN RESONANCE IN SEMICONDUCTORS
    WHIFFEN, DH
    ANALYST, 1967, 92 (1092) : 203 - +
  • [22] ELECTRON SPIN RESONANCE STUDIES OF IRRADIATED SEMICONDUCTORS
    URSU, I
    LUPEI, V
    NISTOR, SV
    ATOMIC ENERGY REVIEW, 1967, 5 (01) : 97 - &
  • [23] ELECTRON SPIN RESONANCE SPECTROSCOPY - APPLICATION TO PROOF OF STRUCTURE OF ORGANIC KETONES
    RUSSELL, GA
    TALATY, ER
    SCIENCE, 1965, 148 (3674) : 1217 - &
  • [24] LANCASTER,G - ELECTRON SPIN RESONANCE IN SEMICONDUCTORS
    STOREY, BE
    BRITISH JOURNAL OF APPLIED PHYSICS, 1967, 18 (01): : 121 - &
  • [25] Analysis of charge transfer complex at the interface between organic and inorganic semiconductors
    Lee, Seung-Hoon
    Huseynova, Gunel
    Choi, Hyun-Kyung
    Lim, Young-Ji
    Lee, Jonghee
    Lee, Jae-Hyun
    ORGANIC ELECTRONICS, 2021, 88
  • [26] Charge pumping by electron spin resonance
    Wang, J.
    Chan, K. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (05)
  • [27] Electrically detected electron spin resonance of doped-phthalocyanine/C60 heterojunction
    Hiromitsu, I
    Kaimori, Y
    Kitano, M
    Shinto, R
    Ito, T
    SYNTHETIC METALS, 1999, 102 (1-3) : 1439 - 1440
  • [28] Electron Spin Resonance of Charge Carriers in Organic Field-Effect Devices
    Kuroda, Shin-ichi
    Watanabe, S.
    Ito, K.
    Tanaka, H.
    Ito, H.
    Marumoto, K.
    APPLIED MAGNETIC RESONANCE, 2009, 36 (2-4) : 357 - 370
  • [29] Electron Spin Resonance of Charge Carriers in Organic Field-Effect Devices
    Shin-ichi Kuroda
    S. Watanabe
    K. Ito
    H. Tanaka
    H. Ito
    K. Marumoto
    Applied Magnetic Resonance, 2009, 36 : 357 - 370
  • [30] Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer
    Pelzer, Kenley M.
    Vazquez-Mayagoitia, Alvaro
    Ratcliff, Laura E.
    Tretiak, Sergei
    Bair, Raymond A.
    Gray, Stephen K.
    Van Voorhis, Troy
    Larsen, Ross E.
    Darling, Seth B.
    CHEMICAL SCIENCE, 2017, 8 (04) : 2597 - 2609