Optimal estimation and Cramer-Rao bounds for partial non-gaussian state space models

被引:31
|
作者
Bergman, N
Doucet, A
Gordon, N
机构
[1] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[3] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
关键词
optimal estimation; Bayesian inference; sequential Monte Carlo methods; posterior Cramer-Rao bounds;
D O I
10.1023/A:1017920621802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramer-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条
  • [1] Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models
    Niclas Bergman
    Arnaud Doucet
    Neil Gordon
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 97 - 112
  • [2] Cramer-Rao Bounds for Filtering Based on Gaussian Process State-Space Models
    Zhao, Yuxin
    Fritsche, Carsten
    Hendeby, Gustaf
    Yin, Feng
    Chen, Tianshi
    Gunnarsson, Fredrik
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) : 5936 - 5951
  • [3] A radar application of a modified Cramer-Rao bound: Parameter estimation in non-Gaussian clutter
    Gini, F
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (07) : 1945 - 1953
  • [4] Posterior Cramer-Rao bounds for state estimation with quantized measurement
    Duan, Zhansheng
    Jilkov, Vesselin P.
    Li, X. Rong
    PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 376 - 380
  • [5] Cramer-Rao bounds for MIMO channel estimation
    Berriche, L
    Abed-Meraim, K
    Belfiore, JC
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 397 - 400
  • [6] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877
  • [7] Cramer-Rao bounds for blind multichannel estimation
    de Carvalho, E
    Cioffi, J
    Slock, D
    GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 1036 - 1040
  • [8] CRAMER-RAO BOUNDS FOR THE ESTIMATION OF NORMAL MIXTURES
    PERLOVSKY, LI
    PATTERN RECOGNITION LETTERS, 1989, 10 (03) : 141 - 148
  • [9] Cramer-Rao Bounds for Road Profile Estimation
    Akcay, Huseyin
    Turkay, Semiha
    2017 IEEE 3RD COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC), 2017,
  • [10] Harmonics in Gaussian multiplicative and additive noise: Cramer-Rao bounds
    Univ of Virginia, Charlottesville, VA, United States
    IEEE Trans Signal Process, 5 (1217-1231):