A Robust Incremental Principal Component Analysis for Feature Extraction from Stream Data with Missing Values

被引:0
|
作者
Aoki, Daijiro [1 ]
Omori, Toshiaki [1 ]
Ozawa, Seiichi [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Kobe, Hyogo 6578501, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a robust incremental principal component analysis (IPCA) for stream data that can handle missing values on an ongoing basis. In the proposed IPCA, a missing value is substituted with the value estimated from a conditional probability density function. The conditional probability density functions are incrementally updated when new data are given. In the experiments, we evaluate the performance for both artificial and real data sets through the comparison with the two conventional approaches to handing missing values. We first investigate the estimation errors of missing values. The experimental results demonstrate that the proposed IPCA gives lower estimation errors compared to the other approaches. Next, we investigate the approximation accuracy of eigenvectors. The results show that the proposed IPCA has relatively good accuracy of eigenvectors not only for major components but also for minor components.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154
  • [2] Online feature extraction based on accelerated kernel principal component analysis for data stream
    Joseph A.A.
    Tokumoto T.
    Ozawa S.
    [J]. Evolving Systems, 2016, 7 (1) : 15 - 27
  • [3] A Fast Incremental Kernel Principal Component Analysis for Online Feature Extraction
    Ozawa, Seiichi
    Takeuchi, Yohei
    Abe, Shigeo
    [J]. PRICAI 2010: TRENDS IN ARTIFICIAL INTELLIGENCE, 2010, 6230 : 487 - 497
  • [4] Missing values in principal component analysis
    Grung, B
    Manne, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 125 - 139
  • [5] Robust principal component analysis of electromagnetic arrays with missing data
    Smirnov, M. Yu
    Egbert, G. D.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (03) : 1423 - 1438
  • [6] Dynamic principal component analysis with missing values
    Kwon, Junhyeon
    Oh, Hee-Seok
    Lim, Yaeji
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (11) : 1957 - 1969
  • [7] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    [J]. JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [8] A Fast Incremental Kernel Principal Component Analysis for Learning Stream of Data Chunks
    Tokumoto, Takaomi
    Ozawa, Seiichi
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2881 - 2888
  • [9] An Incremental Autoencoder Approach for Data Stream Feature Extraction
    Aydogdu, Ozge
    Ekinci, Murat
    [J]. 2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 261 - 264
  • [10] Online discriminative component analysis feature extraction from stream data with domain knowledge
    Allahyar, Amin
    Yazdi, Hadi Sadoghi
    [J]. INTELLIGENT DATA ANALYSIS, 2014, 18 (05) : 927 - 951