On multiple change-point estimation for Poisson process

被引:4
|
作者
Chernoyarov, O. V. [1 ]
Kutoyants, Yu. A. [2 ,3 ]
Top, A. [2 ,4 ]
机构
[1] Natl Res Univ, MPEI, Dept Elect & Nanoelect, Moscow, Russia
[2] Le Mans Univ, Dept Math, F-72085 Le Mans, France
[3] Voronezh State Univ, Dept Radiophys, Voronezh, Russia
[4] Univ Gaston Berger, St Louis, Senegal
关键词
Bayesian estimator; change-point; inhomogeneous Poisson process; likelihood ratio process; maximum-likelihood estimator;
D O I
10.1080/03610926.2017.1317810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is devoted to the problem of change-point parameter estimation in the case of the presence of multiple changes in the intensity function of the Poisson process. It is supposed that the observations are independent inhomogeneous Poisson processes with the same intensity function and this intensity function has two jumps separated by a known quantity. The asymptotic behavior of the maximum-likelihood and Bayesian estimators are described. It is shown that these estimators are consistent, have different limit distributions, the moments converge and that the Bayesian estimators are asymptotically efficient. The numerical simulations illustrate the obtained results.
引用
收藏
页码:1215 / 1233
页数:19
相关论文
共 50 条
  • [21] NONPARAMETRIC CHANGE-POINT ESTIMATION
    CARLSTEIN, E
    [J]. ANNALS OF STATISTICS, 1988, 16 (01): : 188 - 197
  • [22] ESTIMATION UP TO A CHANGE-POINT
    FOSTER, DP
    GEORGE, EI
    [J]. ANNALS OF STATISTICS, 1993, 21 (02): : 625 - 644
  • [23] ROBUST RETROSPECTIVE MULTIPLE CHANGE-POINT ESTIMATION FOR MULTIVARIATE DATA
    Lung-Yut-Fong, Alexandre
    Levy-Leduc, Celine
    Cappe, Olivier
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 405 - 408
  • [24] Multiple Change-Point Estimation of Air Pollution Mean Vectors
    Kim, Jaehee
    Cheon, Sooyoung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (04) : 687 - 695
  • [25] Dirichlet Process Hidden Markov Multiple Change-point Model
    Ko, Stanley I. M.
    Chong, Terence T. L.
    Ghosh, Pulak
    [J]. BAYESIAN ANALYSIS, 2015, 10 (02): : 275 - 296
  • [26] A synchronous multiple change-point detecting method for manufacturing process
    Wu, Zhenyu
    Li, Yanting
    Hu, Lanye
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 169
  • [27] Barankin-Type Lower Bound on Multiple Change-Point Estimation
    La Rosa, Patricio S.
    Renaux, Alexandre
    Muravchik, Carlos H.
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5534 - 5549
  • [28] Poisson source localization on the plane: change-point case
    C. Farinetto
    Yu. A. Kutoyants
    A. Top
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 675 - 698
  • [29] Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach
    Tai, Yu Chuan
    Kvale, Mark N.
    Witte, John S.
    [J]. BIOMETRICS, 2010, 66 (03) : 675 - 683
  • [30] Sequential change-point detection in Poisson autoregressive models
    Kengne, William
    [J]. JOURNAL OF THE SFDS, 2015, 156 (04): : 98 - 112