On multiple change-point estimation for Poisson process

被引:4
|
作者
Chernoyarov, O. V. [1 ]
Kutoyants, Yu. A. [2 ,3 ]
Top, A. [2 ,4 ]
机构
[1] Natl Res Univ, MPEI, Dept Elect & Nanoelect, Moscow, Russia
[2] Le Mans Univ, Dept Math, F-72085 Le Mans, France
[3] Voronezh State Univ, Dept Radiophys, Voronezh, Russia
[4] Univ Gaston Berger, St Louis, Senegal
关键词
Bayesian estimator; change-point; inhomogeneous Poisson process; likelihood ratio process; maximum-likelihood estimator;
D O I
10.1080/03610926.2017.1317810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is devoted to the problem of change-point parameter estimation in the case of the presence of multiple changes in the intensity function of the Poisson process. It is supposed that the observations are independent inhomogeneous Poisson processes with the same intensity function and this intensity function has two jumps separated by a known quantity. The asymptotic behavior of the maximum-likelihood and Bayesian estimators are described. It is shown that these estimators are consistent, have different limit distributions, the moments converge and that the Bayesian estimators are asymptotically efficient. The numerical simulations illustrate the obtained results.
引用
收藏
页码:1215 / 1233
页数:19
相关论文
共 50 条
  • [1] Continuous-time estimation of a change-point in a Poisson process
    West, RW
    Ogden, RT
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 56 (04) : 293 - 302
  • [2] Estimation of the intensity function of an inhomogeneous Poisson process with a change-point
    Ng, Tin Lok J.
    Murphy, Thomas B.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (04): : 604 - 618
  • [3] Bayesian multiple change-point estimation of Poisson rates in control charts
    Assareh, H.
    Noorossana, R.
    Mohammadi, M.
    Mengersen, K.
    [J]. SCIENTIA IRANICA, 2016, 23 (01) : 316 - 329
  • [4] Estimation of parameters for nonhomogeneous Poisson process: Software reliability with change-point model
    Chang, YP
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2001, 30 (03) : 623 - 635
  • [5] On smooth change-point location estimation for Poisson Processes
    Amiri, Arij
    Dachian, Serguei
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (03) : 499 - 524
  • [6] On smooth change-point location estimation for Poisson Processes
    Arij Amiri
    Sergueï Dachian
    [J]. Statistical Inference for Stochastic Processes, 2021, 24 : 499 - 524
  • [7] Bayesian analysis of compound Poisson process with change-point
    Wang, Pingping
    Tang, Yincai
    Xu, Ancha
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2019, 16 (03): : 297 - 317
  • [8] ASYMPTOTIC INFERENCE FOR A CHANGE-POINT POISSON-PROCESS
    AKMAN, VE
    RAFTERY, AE
    [J]. ANNALS OF STATISTICS, 1986, 14 (04): : 1583 - 1590
  • [9] Barankin bound for multiple change-point estimation
    La Rosa, Patricio S.
    Renaux, Alexandre
    Nehorai, Arye
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 233 - 236
  • [10] Estimation and comparison of multiple change-point models
    Chib, S
    [J]. JOURNAL OF ECONOMETRICS, 1998, 86 (02) : 221 - 241