A test for a parametric form of the volatility in second-order diffusion models

被引:3
|
作者
Yan, Tianshun [1 ]
Mei, Changlin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Dept Stat, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Second-order diffusion models; Generalized likelihood ratio test; Local-linear fitting; Bootstrap; OF-FIT TESTS; STOCHASTIC DIFFERENTIAL-EQUATIONS; COEFFICIENT REGRESSION-MODELS; TERM STRUCTURE; TIME-SERIES; SPECIFICATION;
D O I
10.1007/s00180-016-0685-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Second-order diffusion models have been found to be promising in analyzing financial market data. Based on nonparametric fitting, Nicolau (Stat Probabil Lett 78(16):2700-2704, 2008) suggested that the quadratic function may be an appropriate specification of the volatility when a second-order diffusion model is used to analyze some European and American financial market data sets, which motivates us to develop a formal statistical test for this finding. To achieve the task, a generalized likelihood ratio test is proposed in this paper and a residual-based bootstrap is suggested to compute the p value of the test. The analysis of many real-world financial market data sets demonstrates that the quadratic specification of the volatility function is in general reasonable.
引用
收藏
页码:1583 / 1596
页数:14
相关论文
共 50 条
  • [11] Parametric control for a second-order stochastic system
    Iourtchenko, DV
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2004, 43 (01) : 79 - 83
  • [12] Parametric control for a second-order stochastic system
    Iourtchenko, D.V.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2004, (01): : 84 - 88
  • [13] Parametric order reduction of proportionally damped second-order systems
    Eid, Rudy
    Salimbahrami, Behnam
    Lohmann, Boris
    Rudnyi, Evgenii B.
    Korvink, Jan G.
    SENSORS AND MATERIALS, 2007, 19 (03) : 149 - 164
  • [14] On the geodesic form of second-order dynamic equations
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (02) : 835 - 844
  • [15] Inference in second-order identified models
    Dovonon, Prosper
    Hall, Alastair R.
    Kleibergen, Frank
    JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 346 - 372
  • [16] Second-order latent growth models
    Sayer, AG
    Cumsille, PE
    NEW METHODS FOR THE ANALYSIS OF CHANGE, 2001, : 179 - 200
  • [17] Second-order Markov multistate models
    Besalu, Mireia
    Melis, Guadalupe Gomez
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2024, 48 (02) : 209 - 234
  • [18] Non-parametric calibration of the local volatility surface for European options using a second-order Tikhonov regularization
    Geng, Jian
    Navon, I. Michael
    Chen, Xiao
    QUANTITATIVE FINANCE, 2014, 14 (01) : 73 - 85
  • [19] Second-order Parametric Low Pass Filters.
    Horkov, G.I.
    Lukic, Gordana
    Elektrotehnika Zagreb, 1985, 28 (04): : 195 - 198
  • [20] Diffusion of a line vortex in a second-order fluid
    Erdogan, ME
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (03) : 441 - 445