The effect of cluster sampling on the covariance and correlation matrices of sample distribution functions

被引:0
|
作者
Park, Inho [1 ]
Eltinge, John L. [2 ]
机构
[1] Bank Korea, Econ Stat Dept, Seoul 100794, South Korea
[2] US Bur Labor Stat, Washington, DC 20212 USA
关键词
Complex sample design; Design effect; Misspecification effect matrix; Stratified multistage sampling; Tail quantile estimator;
D O I
10.1016/j.jkss.2010.04.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the analysis of continuous variables collected through a complex sample design, the sparseness of data in the tail region may lead to relatively poor performance for design-based estimation of distribution functions and also to potential instability of direct design-based estimators of their covariance matrices. Consequently, it is of interest to consider approximation methods that may lead to more stable covariance matrix estimators. Accordingly, one may seek to obtain better inference methods by fitting an appropriate parametric model to data from these tail regions. This paper develops one such approximation method by examining the effect of cluster sampling on the covariance and correlation matrices of sample distribution functions based on a superpopulation model. The results are applied to data from a stratified multistage sampling design. It is then compared with the empirical result from medical examination data from the US Third National Health and Nutrition Examination Survey. (C) 2010 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 50 条
  • [21] A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
    Soshnikov, A
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 1033 - 1056
  • [22] NONPARAMETRIC ESTIMATE OF SPECTRAL DENSITY FUNCTIONS OF SAMPLE COVARIANCE MATRICES: A FIRST STEP
    Jing, Bing-Yi
    Pan, Guangming
    Shao, Qi-Man
    Zhou, Wang
    ANNALS OF STATISTICS, 2010, 38 (06): : 3724 - 3750
  • [23] WEAK-CONVERGENCE OF RANDOM FUNCTIONS DEFINED BY THE EIGENVECTORS OF SAMPLE COVARIANCE MATRICES
    SILVERSTEIN, JW
    ANNALS OF PROBABILITY, 1990, 18 (03): : 1174 - 1194
  • [24] LIMIT THEORY FOR THE SAMPLE COVARIANCE AND CORRELATION-FUNCTIONS OF MOVING AVERAGES
    DAVIS, R
    RESNICK, S
    ANNALS OF STATISTICS, 1986, 14 (02): : 533 - 558
  • [25] Characteristic Polynomials of Sample Covariance Matrices
    H. Kösters
    Journal of Theoretical Probability, 2011, 24 : 545 - 576
  • [26] A CLT FOR REGULARIZED SAMPLE COVARIANCE MATRICES
    Anderson, Greg W.
    Zeitouni, Ofer
    ANNALS OF STATISTICS, 2008, 36 (06): : 2553 - 2576
  • [27] On the principal components of sample covariance matrices
    Bloemendal, Alex
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (1-2) : 459 - 552
  • [28] Characteristic Polynomials of Sample Covariance Matrices
    Koesters, H.
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) : 545 - 576
  • [29] Functional CLT for sample covariance matrices
    Bai, Zhidong
    Wang, Xiaoying
    Zhou, Wang
    BERNOULLI, 2010, 16 (04) : 1086 - 1113
  • [30] Linear Pooling of Sample Covariance Matrices
    Raninen, Elias
    Tyler, David E.
    Ollila, Esa
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 659 - 672