Using Floating-Gate MOS as a Non-Volatile Analog Memory for Energy-Efficient Adaptive Thresholding in ECG Sensors

被引:2
|
作者
Gungor, Cihan Berk [1 ,2 ]
Toreyin, Hakan [1 ]
机构
[1] San Diego State Univ, Elect & Comp Engn, San Diego, CA 92182 USA
[2] Univ Calif San Diego, Elect & Comp Engn, San Diego, CA 92103 USA
来源
关键词
ECG sensors; edge computing; floating-gate metal-oxide-semiconductor devices; analog signal processing;
D O I
10.1109/sensors43011.2019.8956765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a floating-gate metal-oxide-semiconductor (FGMOS) device in a 65 nm standard CMOS technology as a non-volatile analog memory element for energy-efficient adaptive thresholding in an electrocardiogram (ECG) sensor. We present the write and erase characteristics of the FGMOS obtained through measurements on fabricated pMOS-type FG elements. An adaptive thresholding circuitry that generates, stores, and dynamically updates a threshold value on a FGMOS element to identify the R-waves in an ECG recording is demonstrated. The proposed circuitry uses the outputs from a Pan-Tompkins-algorithm-based ECG processor that accentuates the R-waves of a 50 s ECG recording from the MIT-BIH arrhythmia database. Circuit simulations of the proposed adaptive thresholding circuitry and the measured characteristics of the analog memory element demonstrate the similarity between the adaptive thresholds from the proposed circuitry and the digital implementation of the original Pan-Tompkins algorithm. The proposed circuitry consumes 19 nW.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ELECTRICALLY ALTERABLE NON-VOLATILE MEMORY CELL USING A FLOATING-GATE STRUCTURE
    GUTERMAN, DC
    RIMAWI, IH
    CHIU, TL
    HALVORSON, RD
    MCELROY, DJ
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1979, 26 (04) : 576 - 586
  • [2] ELECTRICALLY ALTERABLE NON-VOLATILE MEMORY CELL USING A FLOATING-GATE STRUCTURE
    GUTERMAN, DC
    RIMAWI, IH
    CHIU, TL
    HALVORSON, RD
    MCELROY, DJ
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1979, 14 (02) : 498 - 508
  • [3] TRIMMING ANALOG CIRCUITS USING FLOATING-GATE ANALOG MOS MEMORY
    CARLEY, LR
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1989, 24 (06) : 1569 - 1575
  • [4] Energy-Efficient Streaming Using Non-volatile Memory
    Mohammed G. Khatib
    Pieter H. Hartel
    Hylke W. van Dijk
    [J]. Journal of Signal Processing Systems, 2010, 60 : 149 - 168
  • [5] Energy-Efficient Streaming Using Non-volatile Memory
    Khatib, Mohammed G.
    Hartel, Pieter H.
    van Dijk, Hylke W.
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2010, 60 (02): : 149 - 168
  • [6] Adaptive Granularity Encoding for Energy-efficient Non-Volatile Main Memory
    Xu, Jie
    Feng, Dan
    Hua, Yu
    Tong, Wei
    Liu, Jingning
    Li, Chunyan
    Xu, Gaoxiang
    Chen, Yiran
    [J]. PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [7] Energy-efficient magnetoelastic non-volatile memory
    Biswas, Ayan K.
    Bandyopadhyay, Supriyo
    Atulasimha, Jayasimha
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (23)
  • [8] A NONVOLATILE ANALOG NEURAL MEMORY USING FLOATING-GATE MOS-TRANSISTORS
    YANG, H
    SHEU, BJ
    LEE, JC
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 1992, 2 (01) : 19 - 25
  • [9] The Floating-Gate Non-Volatile Semiconductor Memory-From Invention to the Digital Age
    Sze, S. M.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (10) : 7587 - 7596
  • [10] Floating-gate controlled programmable non-volatile black phosphorus PNP junction memory
    Zhang, Pengfei
    Li, Dong
    Chen, Mingyuan
    Zong, Qijun
    Shen, Jun
    Wan, Dongyun
    Zhu, Jingtao
    Zhang, Zengxing
    [J]. NANOSCALE, 2018, 10 (07) : 3148 - 3152