On the distribution and gap structure of Lee-Yang zeros for the Ising model: Periodic and aperiodic couplings

被引:16
|
作者
Barata, JCA [1 ]
Goldbaum, PS [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lee Yang zeros; aperiodic systems; substitution sequences;
D O I
10.1023/A:1010332500031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present some results on the distribution of Lee Yang zeros for the ferromagnetic Ising model on the rooted Cayley Tree (Bethe Lattice), assuming free boundary conditions, and in the one-dimensional lattice with periodic boundary conditions. In the case of the Cayley Tree, we derive the conditions that the interactions between spins must obey in order to ensure existence or absence of phase transition at finite temperature (T not equal 0). The results are first obtained for periodic interactions along the generations of the lattice. Then, using periodic approximants, we are also able to obtain results for aperiodic sequences generated by substitution rules acting on a finite alphabet. The particular examples of the Fibonacci and the Thue-Morse sequences are discussed. Most of the results are obtained for a Cayley Tree with arbitrary order d. We will be concerned in showing whether or not the zeros become dense in the whole unit circle of the Fugacity variable, Regarding the one-dimensional Ising model, we derive a general treatment for the structure of gaps (regions free of Lee-Yang zeros) around the unit circle.
引用
收藏
页码:857 / 891
页数:35
相关论文
共 50 条
  • [21] Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain
    Hickey, James M.
    Flindt, Christian
    Garrahan, Juan P.
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [22] Lee-Yang zeros of periodic and quasiperiodic anisotropic XY chains in a transverse field
    Tong, Peiqing
    Liu, Xiaoxian
    PHYSICAL REVIEW LETTERS, 2006, 97 (01)
  • [23] LEE-YANG ZEROS IN THE ONE FLAVOR MASSIVE LATTICE SCHWINGER MODEL
    GAUSTERER, H
    LANG, CB
    PHYSICS LETTERS B, 1994, 341 (01) : 46 - 52
  • [24] Lee-Yang theory of the two-dimensional quantum Ising model
    Vecsei, Pascal M.
    Lado, Jose L.
    Flindt, Christian
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [25] First analysis of anisotropic flow with Lee-Yang zeros
    Bastid, N
    Andronic, A
    Barret, V
    Basrak, Z
    Benabderrahmane, ML
    Caplar, R
    Cordier, E
    Crochet, P
    Dupieux, P
    Dzelalija, M
    Fodor, Z
    Gasparic, I
    Gobbi, A
    Grishkin, Y
    Hartmann, ON
    Herrmann, N
    Hildenbrand, KD
    Hong, B
    Kecskemeti, J
    Kim, YJ
    Kirejczyk, M
    Koczon, P
    Korolija, M
    Kotte, R
    Kress, T
    Lebedev, A
    Leifels, Y
    Lopez, X
    Mangiarotti, A
    Manko, V
    Merschmeyer, M
    Moisa, D
    Neubert, W
    Pelte, D
    Petrovici, M
    Rami, F
    Reisdorf, W
    Schuettauf, A
    Seres, Z
    Sikora, B
    Sim, KS
    Simion, V
    Siwek-Wilczynska, K
    Smolarkiewicz, MM
    Smolyankin, V
    Soliwoda, IJ
    Stockmeier, MR
    Stoicea, G
    Tyminski, Z
    Wisniewski, K
    PHYSICAL REVIEW C, 2005, 72 (01)
  • [26] CP Symmetry, Lee-Yang zeros and Phase Transitions
    Aguado, M.
    Asorey, M.
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 173 - 175
  • [27] Limiting Measure of Lee-Yang Zeros for the Cayley Tree
    Chio, Ivan
    He, Caleb
    Ji, Anthony L.
    Roeder, Roland K. W.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (03) : 925 - 957
  • [28] OSCILLATORY MOMENTS IN LEE-YANG ZEROS AND LHC PREDICTIONS
    Dewanto, A.
    Chan, A. H.
    Lim, Z. H.
    Oh, C. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (18-19): : 3447 - 3454
  • [29] Condensation of Lee-Yang zeros in scalar field theory
    Antoniou, N. G.
    Diakonos, F. K.
    Maintas, X. N.
    Tsagkarakis, C. E.
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [30] LEE-YANG THEOREM ON GENERALIZED ISING MODELS WITH DEGENERACY
    YAMASHITA, M
    NAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (02): : 662 - 664