Semi-supervised hyperspectral unmixing approach based on nonnegative matrix factorization

被引:1
|
作者
Zhang, Lifu [1 ]
Wang, Nan [1 ]
Zhang, Xia [1 ]
Chen, Zhengfu [2 ]
Gao, Min [2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100864, Peoples R China
[2] Jiangsu UMap Spatial Informat Technol Co Ltd, Beijing, Peoples R China
关键词
hyperspectral remote sensing; unmixing; partial known endmembers; semi-supervised; ENDMEMBER EXTRACTION;
D O I
10.1117/12.2225465
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-negative matrix factorization (NMF) has been introduced into the field of hyperspectral unmixing in the last ten years. Though NMF-based approaches have been widely accepted by researchers, the assumptions in them may not always fit for the characteristics of real ground objectives, which will cause the incorrect results and restrict the applications for these approaches. This paper proposes a novel semi-supervised NMF model, in which the ground truth information is introduced such as partial known endmembers from ground measurment. The relationship between the known and unknown endmembers are explored. The distance function is designed to describe the relationship and introduced into the NMF model. In this way, SSNMF could use the known endmembers to help estimating the unknown endmembers, so that accurate and robust results can be obtained. The proposed algorithm was compared with NMFupk, which also considered partial known endmembers, using extensive synthetic data and real hyperspectral data. The experiments show that the proposed algorithm can give a better performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A complexity constrained nonnegative matrix factorization for hyperspectral unmixing
    Jia, Sen
    Qian, Yuntao
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 268 - +
  • [32] Geometric Nonnegative Matrix Factorization (GNMF) for Hyperspectral Unmixing
    Yang, Shuyuan
    Zhang, Xiantong
    Yao, Yigang
    Cheng, Shiqian
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2696 - 2703
  • [33] STRUCTURED DISCRIMINATIVE NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Li, Xue
    Zhou, Jun
    Tong, Lei
    Yu, Xun
    Guo, Jianhui
    Zhao, Chunxia
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1848 - 1852
  • [34] A Novel Nonnegative Matrix Factorization Method for Hyperspectral Unmixing
    Xu, Nan
    Yang, Huadong
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [35] Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Liu, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6076 - 6090
  • [36] Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization
    Fevotte, Cedric
    Dobigeon, Nicolas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4810 - 4819
  • [37] Maximum Likelihood Estimation Based Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Jiang, Qin
    Dong, Yifei
    Peng, Jiangtao
    Yan, Mei
    Sun, Yi
    REMOTE SENSING, 2021, 13 (13)
  • [38] Laplace Nonnegative Matrix Factorization with Application to Semi-supervised Audio Denoising
    Tanji, Hiroki
    Murakami, Takahiro
    Kamata, Hiroyuki
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [39] A General Loss-Based Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Peng, Jiangtao
    Sun, Weiwei
    Jiang, Fan
    Chen, Hong
    Zhou, Yicong
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] A fast algorithm for hyperspectral unmixing based on constrained nonnegative matrix factorization
    Liu, Jian-Jun
    Wu, Ze-Bin
    Wei, Zhi-Hui
    Xiao, Liang
    Sun, Le
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2013, 41 (03): : 432 - 437