The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Moller-Plesset perturbation theory

被引:81
|
作者
Hoyvik, Ida-Marie [1 ]
Kristensen, Kasper [1 ]
Jansik, Branislav [1 ]
Jorgensen, Poul [1 ]
机构
[1] Aarhus Univ, Dept Chem, Lundbeck Fdn Ctr Theoret Chem, DK-8000 Aarhus C, Denmark
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 01期
关键词
atomic structure; coupled cluster calculations; error analysis; perturbation theory; ELECTRON CORRELATION METHODS; LOCAL CORRELATION APPROACH; ATOMIC ORBITAL BASIS; MOLECULAR-ORBITALS; CORRELATION-ENERGY; MP2; SYSTEMS; IMPLEMENTATION; EQUATIONS;
D O I
10.1063/1.3667266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previously, we have introduced the linear scaling coupled cluster (CC) divide-expand-consolidate (DEC) method, using an occupied space partitioning of the standard correlation energy. In this article, we show that the correlation energy may alternatively be expressed using a virtual space partitioning, and that the Lagrangian correlation energy may be partitioned using elements from both the occupied and virtual partitioning schemes. The partitionings of the correlation energy leads to atomic site and pair interaction energies which are term-wise invariant with respect to an orthogonal transformation among the occupied or the virtual orbitals. Evaluating the atomic site and pair interaction energies using local orbitals leads to a linear scaling algorithm and a distinction between Coulomb hole and dispersion energy contributions to the correlation energy. Further, a detailed error analysis is performed illustrating the error control imposed on all components of the energy by the chosen energy threshold. This error control is ultimately used to show how to reduce the computational cost for evaluating dispersion energy contributions in DEC. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3667266]
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Calculation of frequency-dependent polarizabilities and hyperpolarizabilities by the second-order Moller-Plesset perturbation theory
    Aiga, F
    Itoh, R
    [J]. CHEMICAL PHYSICS LETTERS, 1996, 251 (5-6) : 372 - 380
  • [32] Application of Gaussian-type geminals in local second-order Moller-Plesset perturbation theory
    Polly, Robert
    Werner, Hans-Joachim
    Dahle, Pal
    Taylor, Peter R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [33] Analytic energy gradients for the orbital-optimized second-order Moller-Plesset perturbation theory
    Bozkaya, Ugur
    Sherrill, C. David
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [34] A Kinetic Energy Fitting Metric for Resolution of the Identity Second-Order Moller-Plesset Perturbation Theory
    Lambrecht, Daniel S.
    Brandhorst, Kai
    Miller, William H.
    McCurdy, C. William
    Head-Gordon, Martin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (13): : 2794 - 2801
  • [35] Comparison of bis(alkylthio)carbenes by density functional and Second-order Moller-Plesset perturbation theory
    Rahmi, Keywan
    Kassaee, Mohammad Z.
    Khorshidvand, Neda
    [J]. JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2021, 34 (01)
  • [36] Convergence of attenuated second order Moller-Plesset perturbation theory towards the complete basis set limit
    Goldey, Matthew B.
    Head-Gordon, Martin
    [J]. CHEMICAL PHYSICS LETTERS, 2014, 608 : 249 - 254
  • [37] Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals
    Tew, David P.
    Helmich, Benjamin
    Haettig, Christof
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (07):
  • [38] Density fitting in second-order linear-r12 Moller-Plesset perturbation theory
    Manby, FR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (09): : 4607 - 4613
  • [39] Tensor Hypercontraction Second-Order Moller-Plesset Perturbation Theory: Grid Optimization and Reaction Energies
    Schumacher, Sara I. L. Kokkila
    Hohenstein, Edward G.
    Parrish, Robert M.
    Wang, Lee-Ping
    Martinez, Todd J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (07) : 3042 - 3052
  • [40] Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations
    Schütz, M
    Werner, HJ
    Lindh, R
    Manby, FR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02): : 737 - 750