CCG supertagging with bidirectional long short-term memory networks

被引:3
|
作者
Kadari, Rekia [1 ]
Zhang, Yu [1 ]
Zhang, Weinan [1 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, Res Ctr Social Comp & Informat Retrieval, Harbin, Heilongjiang, Peoples R China
关键词
CORPUS;
D O I
10.1017/S1351324917000250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Network-based approaches have recently produced good performances in Natural language tasks, such as Supertagging. In the supertagging task, a Supertag (Lexical category) is assigned to each word in an input sequence. Combinatory Categorial Grammar Supertagging is a more challenging problem than various sequence-tagging problems, such as part-of-speech (POS) tagging and named entity recognition due to the large number of the lexical categories. Specifically, simple Recurrent Neural Network (RNN) has shown to significantly outperform the previous state-of-the-art feed-forward neural networks. On the other hand, it is well known that Recurrent Networks fail to learn long dependencies. In this paper, we introduce a new neural network architecture based on backward and Bidirectional Long Short-Term Memory (BLSTM) Networks that has the ability to memorize information for long dependencies and benefit from both past and future information. State-of-the-art methods focus on previous information, whereas BLSTM has access to information in both previous and future directions. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short-Term Memory (LSTM) networks are more precise and successful than both unidirectional and bidirectional standard RNNs. Experiment results reveal the effectiveness of our proposed method on both in-domain and out-of-domain datasets. Experiments show improvements about (1.2 per cent) over standard RNN.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [41] ANALYSIS AND COMPARISON OF LONG SHORT-TERM MEMORY NETWORKS SHORT-TERM TRAFFIC PREDICTION PERFORMANCE
    Dogan, Erdem
    [J]. SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2020, 107 : 19 - 32
  • [42] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [43] On extended long short-term memory and dependent bidirectional recurrent neural network
    Su, Yuanhang
    Kuo, C-C Jay
    [J]. NEUROCOMPUTING, 2019, 356 : 151 - 161
  • [44] Fuzzy Clustering and Bidirectional Long Short-Term Memory for Sleep Stages Classification
    Yulita, Intan Nurma
    Fanany, Mohamad Ivan
    Arymurthy, Aniati Murni
    [J]. 2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING, INTELLIGENT SYSTEM AND INFORMATION TECHNOLOGY (ICSIIT), 2017, : 11 - 16
  • [45] Application of bidirectional long short-term memory network for prediction of cognitive age
    Wong, Shi-Bing
    Tsao, Yu
    Tsai, Wen-Hsin
    Wang, Tzong-Shi
    Wu, Hsin-Chi
    Wang, Syu-Siang
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [46] Bidirectional Long Short-Term Memory for Sentiment Analysis of Chinese Product Reviews
    Zhang, Kai
    Song, Wei
    Liu, Lizhen
    Zhao, Xinlei
    Du, Chao
    [J]. PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 665 - 668
  • [47] Reflection Coefficients Inversion Based on the Bidirectional Long Short-Term Memory Network
    Yang, Naxia
    Xiong, Jinliang
    Guo, Chunxiang
    Guo, Shuwen
    Li, Guofa
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Convolutional Bidirectional Long Short-Term Memory for Deception Detection With Acoustic Features
    Xie, Yue
    Liang, Ruiyu
    Tao, Huawei
    Zhu, Yue
    Zhao, Li
    [J]. IEEE ACCESS, 2018, 6 : 76527 - 76534
  • [49] Sleep staging by bidirectional long short-term memory convolution neural network
    Chen, Xueyan
    He, Jie
    Wu, Xiaoqiang
    Yan, Wei
    Wei, Wei
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 109 : 188 - 196
  • [50] Bidirectional Long Short-Term Memory with Gated Relevance Network for Paraphrase Identification
    Shen, Yatian
    Chen, Jifan
    Huang, Xuanjing
    [J]. NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016), 2016, 10102 : 39 - 50